Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T18:51:17.879Z Has data issue: false hasContentIssue false

Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma

Published online by Cambridge University Press:  23 May 2016

Leif Karlstrom*
Affiliation:
Department of Geological Sciences, 1272 University of Oregon, Eugene, OR 97403, USA
Eric M. Dunham
Affiliation:
Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, CA 94305, USA Institute for Computational and Mathematical Engineering, Stanford University, 397 Panama Mall, Stanford, CA 94305, USA
*
Email address for correspondence: leif@uoregon.edu

Abstract

Oscillations of magma in volcanic conduits are thought to be the source of certain seismic and infrasonic signals observed near active volcanoes. However, the multiphase and stratified nature of magma within the conduit complicates the calculation of resonant modes that is required to interpret observations. Here we present a linearized mathematical framework to describe small-amplitude oscillations and waves in a stably stratified column of two-phase magma (liquid melt and gas bubbles) with a traction-free upper surface (a lava lake). We explore the role of time-dependent mass exchange between the phases, depth-varying fluid properties and gravity on the modes of oscillation of inviscid magma within an axisymmetric, vertical conduit. Non-equilibrium phase exchange, which we refer to as bubble growth and resorption (BGR), is parameterized by introduction of a kinetic time scale quantifying mass exchange between the liquid and gas phases that evolves the mixture towards a state of thermodynamic equilibrium. Using a provably stable finite difference method, we solve the eigenvalue problem for the resonance frequencies, decay rates, and spatial structure of the conduit eigenmodes. The numerical method is then extended to time-domain simulations of waves excited by internal volumetric sources in the conduit or forces applied to the surface of the lava lake. We connect time-dependent wave propagation simulations to the modal analysis by identifying the primary modes that are excited by representative excitation processes. Waves propagating through bubbly magma are dispersive, and their behaviour is determined by three dimensionless parameters. One quantifies the importance of buoyancy and gravitational restoring forces relative to compressibility, the second quantifies differences between fluid properties (e.g. mixture compressibility) under equilibrium and non-equilibrium conditions, and the third compares the wave period to the BGR time scale. Pronounced depth variations in background fluid properties, such as the transition from liquid melt with dissolved volatiles at the high pressures at depth to bubbly magma above the gas exsolution depth, segment the conduit into distinct regions. The longest-period modes, which are expressed with the largest amplitudes for typical excitation processes, are most sensitive to the length of the bubbly region and properties of the bubbly magma within it. While the boundary condition at the bottom of the conduit determines whether the fundamental mode is affected by the total conduit length, modes localized above the exsolution depth are remarkably insensitive to the overall conduit length. Our analysis suggests that parameters affecting eruption style, such as total volatile content and kinetic time scales of BGR, along with excitation source characteristics, are imprinted on long-period seismic and infrasonic signals at active volcanoes.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K., Fehler, M. & Das, S. 1977 Source mechanism of volcanic tremor: fluid-driven crack models and their application to the 1963 Kilauea eruption. J. Volcanol. Geotherm. Res. 2, 259287.Google Scholar
Aster, R., Mah, S., Kyle, P., McIntosh, W., Dunbar, N., Johnson, J., Rulz, M. & McNamara, S. 2003 Very long period oscillations of Mount Erebus volcano. J. Geophys. Res. 108 (B11), 2522.Google Scholar
Balmforth, N., Craster, R. & Rust, A. 2005 Instability in flow through elastic conduits and volcanic tremor. J. Fluid Mech. 527, 353377.CrossRefGoogle Scholar
Bercovici, D. & Michaut, C. 2010 Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophys. J. Intl 182, 842864.Google Scholar
Biot, M. A. 1956 Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28 (2), 168178.Google Scholar
Carbone, D., Poland, M. P., Patrick, M. R. & Orr, T. R. 2013 Continuous gravity measurements reveal a low-density lava lake at Kilauea volcano, Hawai’i. Earth Planet. Sci. Lett. 376, 178185.Google Scholar
Carey, R. J., Manga, M., Degruyter, W., Swanson, D., Houghton, B., Orr, T. & Patrick, M. 2012 Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema’uma’u overlook vent, Kilaeau, Hawai’i, USA. J. Geophys. Res. 117 (B11), B11202.Google Scholar
Caricchi, L., Burlini, L., Ulmer, P., Gerya, T., Vassalli, M. & Papale, P. 2007 Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264 (3–4), 402419.Google Scholar
Carpenter, M. H., Gottlieb, D. & Abarbanel, S. 1994 Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 11 (2), 220236.Google Scholar
Carpenter, M. H. & Kennedy, C. A.1996 Fourth-order 2N-storage Runge–Kutta schemes. Tech. Rep. NASA TM-109112.Google Scholar
Chouet, B. 1986 Dynamics of a fluid-driven crack in three dimensions by the finite difference method. J. Geophys. Res 91 (B14), 1396713992.Google Scholar
Chouet, B. & Dawson, P. 2013 Very long period conduit oscillations induced by rockfalls at Kilauea volcano, Hawaii. J. Geophys. Res. 118, 53525371.Google Scholar
Chouet, B., Dawson, P. & Nakano, M. 2006 Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid. J. Geophys. Res. 111 (B7), B07310.Google Scholar
Chouet, B. A. 1996 Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309317.Google Scholar
Chouet, B. A. & Dawson, P. 2011 Shallow conduit system and Kilauea volcano, Hawaii, revealed by seismic signals associated with degassing bursts. J. Geophys. Res. 116 (B12), B12317.Google Scholar
Commander, K. W. & Prosperetti, A. 1989 Linear pressure waves in bubbly liquids: comparison between theory and experiements. J. Acoust. Soc. Am. 85 (2), 732746.Google Scholar
Costa, A., Melnik, O. & Sparks, R. S. J. 2007 Controls of conduit geometry and wallrock elasticity on lava dome eruptions. Earth Planet. Sci. Lett. 260, 137151.Google Scholar
Davies, B. & Martin, B. 1979 Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. 33, 132.Google Scholar
Dawson, P. & Chouet, B. 2014 Characterization of very-long-period seismicity accompanying summit activity at Kilauea volcano, Hawai’i: 2007:2013. J. Volcanol. Geotherm. Res. 278–279, 127.Google Scholar
Eychenne, J., Houghton, B. F., Swanson, D. A., Carey, R. J. & Swavely, L. 2015 Dynamics of an open basaltic system magma system: the 2008 activity of the Halema’uma’u overlook vent, Kilauea caldera. Earth Planet. Sci. Lett. 409, 4960.Google Scholar
Fee, D., Garces, M. A., Patrick, M., Chouet, B., Dawson, P. & Swanson, D. 2010 Infrasonic harmonic tremor and degassing bursts from Halema’uma’u crater, Kilauea volcano, Hawaii. J. Geophys. Res. 115 (B11), B11316.Google Scholar
Fee, D. & Matoza, R. S. 2013 An overview of volcano infrasound: from Hawaiian to Plinian, local to global. J. Volcanol. Geotherm. Res. 249, 123139.Google Scholar
Garcés, M. A. & McNutt, S. R. 1997 Theory of the sound field generated by a resonant magmatic conduit. J. Volcanol. Geotherm. Res. 78, 155178.Google Scholar
Garces, M. A. 2000 Theory of acoustic propagation in a multi-phase stratified liquid flowing within an elastic-walled conduit of varying cross-sectional area. J. Volcanol. Geotherm. Res. 101, 117.Google Scholar
Gardner, J. E., Hilton, M. & Carroll, M. R. 1999 Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet. Sci. Lett. 168 (1–2), 201218.CrossRefGoogle Scholar
Gerlach, T. M. & Graeber, E. L. 1985 Volatile budget of Kilauea volcano. Nature 313, 273277.CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic.Google Scholar
Gonnermann, H. M. & Manga, M. 2006 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321355.CrossRefGoogle Scholar
Gonnermann, H. M. & Manga, M. 2013 Magma ascent in the volcanic conduit. In Modeling Volcanic Processes: The Physics and Mathematics of Volcanism (ed. Fagents, S. A., Gregg, T. K. P. & Lopez, R. C.), pp. 5584. Cambridge University Press.Google Scholar
Gustafsson, B. 1975 The convergence rate for difference approximations to mixed initial boundary value problems. Maths Comput. 29 (130), 396406.CrossRefGoogle Scholar
Gustafsson, B., Kreiss, H.-O. & Oliger, J. 1995 Time Dependent Problems and Difference Methods. Wiley.Google Scholar
Houghton, B. F. & Gonnermann, H. M. 2008 Basaltic explosive volcanism: constraints from deposits and models. Chemie der Erde 68, 117140.Google Scholar
Huber, C., Su, Y., Nguyen, C. T., Parmigiani, A., Gonnermann, H. M. & Dufek, J. 2014 A new bubble dynamics model to study bubble growth, deformation, and coalescence. J. Geophys. Res. 119 (1), 216239.CrossRefGoogle Scholar
Johnson, J. B. & Ripepe, M. 2011 Volcano infrasound: a review. J. Volcanol. Geotherm. Res. 206, 6169.Google Scholar
Julian, B. R. 1994 Volcanic tremor: nonlinear excitation by fluid flow. J. Geophys. Res. 99 (B6), 1185911877.Google Scholar
Kieffer, S. W. 1977 Sound speed in liquid–gas mixtures: water–air and water–steam. J. Geophys. Res. 8 (2), 28952905.Google Scholar
Koyaguchi, T. 2005 An analytical study for 1-dimensional steady flow in volcanic conduits. J. Volcanol. Geotherm. Res. 143, 2952.CrossRefGoogle Scholar
Kozdon, J. E., Dunham, E. M. & Nordstrom, J. 2011 Interaction of waves with frictional interfaces using summation-by-parts difference operators: weak enforcement of nonlinear boundary conditions. J. Sci. Comput. 50 (2), 341367.Google Scholar
Kozono, T. & Koyaguchi, T. 2009 Effects of relative motion between gas and liquid on 1-dimensional steady flow in silicic volcanic conduits. 1. An analytic method. J. Volcanol. Geotherm. Res. 180, 2136.Google Scholar
Kreiss, H.-O. & Scherer, G. 1974 Finite element and finite difference methods for hyperbolic partial differential equations. In Mathematical Aspects of Finite Elements in Partial Differential Equations (ed. de Boor, C.), pp. 195212. Academic.Google Scholar
Kreiss, H.-O. & Scherer, G.1977 On the existence of energy estimates for difference approximations for hyperbolic systems. Tech. Rep. Department of Scientific Computing, Uppsala University.Google Scholar
Kumagai, H. & Chouet, B. A. 2000 Acoustic properties of a crack containing magmatic or hydrothermal fluids. J. Geophys. Res. 105 (B11), 2549325512.Google Scholar
Kurzon, I., Lyakhovsky, V., Navon, O. & Chouet, B. 2011 Pressure waves in a supersaturated bubbly magma. Geophys. J. Intl 187, 421438.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Lensky, N. G., Navon, O. & Lyakhovsky, V. 2004 Bubble growth during decompression of magma: experimental and theoretical investigation. J. Volcanol. Geotherm. Res. 129, 722.Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Lipovsky, B. & Dunham, E. M. 2015 Vibrational modes of hydraulic fractures: inference of fracture geometry from resonant frequencies and attenuation. J. Geophys. Res. 120 (2), 10801107.Google Scholar
Manga, M., Castro, J., Cashman, K. & Loewenberg, M. 1998 Rheology of bubble-bearing magmas. J. Volcanol. Geotherm. Res. 87, 1528.Google Scholar
Mastin, L. G. 2002 Insights into volcanic conduit flow from an open-source numerical model. Geochem. Geophys. Geosyst. 3 (7), 118.Google Scholar
Mattsson, K., Almquist, M. & Carpenter, M. H. 2014 Optimal diagonal-norm SBP operators. J. Comput. Phys. 264, 91111.Google Scholar
Mcnutt, S. R. & Nishimura, T. 2008 Volcanic tremor during eruptions: temporal characteristics, scaling and constraints on conduit size and processes. J. Volcanol. Geotherm. Res. 178 (1), 1220.Google Scholar
Melnik, O. E. & Sparks, R. S. J. 1999 Non-linear dynamics of lava dome extrusion. Nature 402, 3741.Google Scholar
Métrich, N. & Wallace, P. J. 2008 Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Reviews in Mineralogy and Geochemistry 69, 363402.Google Scholar
Navon, O., Chekhmir, A. & Lyakhovsky, V. 1998 Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas. Earth Planet. Sci. Lett. 160, 763776.CrossRefGoogle Scholar
Orr, T. R., Thelen, W. A., Patrick, M. R., Swanson, D. A. & Wilson, D. C. 2013 Explosive eruptions triggered by rockfalls at Kilauea volcano, Hawai’i. Geology 41 (2), 207210.Google Scholar
Papale, P., Moretti, R. & Barbato, D. 2006 The compositional dependence of the saturation surface of H2 O + CO2 fluids in silicate melts. Chem. Geol. 229 (1–3), 7895.Google Scholar
Poland, M. P., Miklius, A. & Montgomery-Brown, E. K. 2014 Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. In Characteristics of Hawaiian Volcanoes (ed. Poland, M.P., Takahashi, T.J. & Landowski, C.M.), chap. 5, pp. 179234. US Geological Survey Professional Paper 1801.Google Scholar
Proussevitch, A., Sahagian, D. & Anderson, A. 1993 Dynamics of diffusive bubble growth in magmas: isothermal case. J. Geophys. Res. 98, 2228322307.Google Scholar
Proussevitch, A. A. & Sahagian, D. L. 1996 Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. J. Geophys. Res. 101 (B8), 1744717455.CrossRefGoogle Scholar
Roache, P. J. 1998 Verification and Validation in Computational Science and Engineering. Hermosa.Google Scholar
Rust, A. C. & Cashman, K. V. 2011 Permeability controls on expansion and size distributions of pyroclasts. J. Geophys. Res. 116 (B11), B11202.Google Scholar
Segall, P. 2010 Earthquake and Volcano Deformation. Princeton University Press.Google Scholar
Sells, C. C. L. 1965 The effect of a sudden change of shape of the bottom of a slightly compressible ocean. Phil. Trans. R. Soc. Lond. A 258 (1092), 495528.Google Scholar
Shima, M. 1958 On the second volcanic micro-tremor at the volcano Aso. Disaster Prevention Research Institute, Kyoto University, Bulletins 22, 16.Google Scholar
Silberman, E. 1957 Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. J. Acoust. Soc. Am. 29, 925933.Google Scholar
Strand, B. 1994 Summation by parts for finite difference approximations of d/dx . J. Comput. Phys. 110 (1), 4767.Google Scholar
Svard, M. & Nordstrom, J. 2014 Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 1738.Google Scholar
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.Google Scholar
Trefethen, N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.Google Scholar
Wallace, P. J. 2005 Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217240.Google Scholar
Watkins, J., Manga, M. & DePaolo, D. 2012 Bubble geobarometry: a record of pressure changes, degassing, and regassing at Mono Craters, California. Geology 40 (8), 699702.Google Scholar
White, J. E. 1983 Underground Sound: Application of Seismic Waves. Elsevier.Google Scholar
van Wijngaarden, L. 1968 On equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465474.Google Scholar
Wilson, D., Elias, T., Orr, T., Patrick, M., Sutton, J. & Swanson, D. 2008 Small explosions from new vent at Kilauea’s summit. EOS Trans. AGU 89 (22), 203.CrossRefGoogle Scholar
Wilson, L. & Head, J. W. 1981 Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86 (B4), 29713001.Google Scholar
Woods, A. W. 1995 The dynamics of explosive volcanic eruptions. Rev. Geophys. 33 (4), 495530.Google Scholar
Yoshimura, S. & Nakamura, M. 2010 Chemically driven growth and resorption of bubbles in a multivolatile magmatic system. Chem. Geol. 276, 1828.Google Scholar
Zhang, Y., Xu, Z., Zhu, M. & Wang, H. 2007 Silicate melt properties and volcanic eruptions. Rev. Geophys. 45 (4), RG4004.Google Scholar