Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T05:42:14.611Z Has data issue: false hasContentIssue false

Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers

Published online by Cambridge University Press:  26 April 2006

A. E. Perry
Affiliation:
Department of Mechanical and Manufacturing Engineering, University of Melbourne, Parkville, Victoria 3052, Australia
J. D. Li
Affiliation:
Department of Mechanical and Manufacturing Engineering, University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

Turbulent boundary layer experiments have been conducted at various Reynolds numbers on smooth walls and also on ‘k-type’ and ‘d-type’ rough walls. Both the spectral results and the broadband turbulence intensity results strongly support the Townsend (1976) attached eddy hypothesis and the Perry & Chong (1982) model. The spectral results obtained using the ‘flying’ hot-wire technique show the errors involved when using Taylor's (1938) hypothesis for converting the spectra from the frequency domain to the wavenumber domain. If the viscous dissipation spectral region is taken into account, the broadband turbulence intensity results agree well with the attached eddy hypothesis. The inconsistency of the various constants given in Perry, Lim & Henbest (1987) for the smooth and rough walls has been explained and removed. Lack of spatial resolution of the hot wires explains to some extent the scatter in the turbulence intensity of the component normal to the wall. This spatial resolution effect is most pronounced in the near-wall region at high Reynolds number and has been corrected by using the method of Wyngaard (1968).

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandyopadhyay, P. R.: 1987 J. Fluid Mech. 180, 231266.
Batchelor, G. K.: 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Bremhorst, K.: 1972 Trans. IEEE Instrum Meas. IM 21, 244248.
Clauser, F. H.: 1954 J. Aero. Sci. 21, 91107.
Coles, D.: 1956 J. Fluid Mech. 1, 191226.
Coles, D.: 1962 USAF. The Rand Cooperation, Rep. R-403-PR, Appendix A.
Erm, L. P., Smith, A. J. & Joubert, P. N., 1986 Turbulent Shear Flows 5 (ed. F. Durst, B. E. Launder, J. L. Lumley, F. W. Schmidt & J. H. Whitelaw). Springer.
Hama, F. R.: 1954 Soc. Naval Archit. Marine Engng, New York, Paper 6.
Hinze, J. O.: 1975 Turbulence, 2nd edn. McGraw-Hill.
Kolmogorov, A. N.: 1941 C. R. Acad. Sci. USSR 30, 301.
Kovasznay, L. S. G.: 1948 J. Aero. Sci. 15, 745753.
Li, J. D.: 1989 The turbulence structure of wall shear flow. Ph.D. thesis, University of Melbourne, Australia.
Li, J. D., Henbest, S. M. & Perry, A. E., 1986 Proc. 9th Australasian Fluid Mech. Conf., Auckland.
Li, J. D. & Perry, A. E., 1989 Proc. 10th Australasian Fluid Mech. Conf., Melbourne.
Ligrani, P. M. & Bradshaw, P., 1987 J. Phys. E: Sci. Instrum. 20, 323332.
Ligrani, P. M. & Bradshaw, P., 1987 Expts. Fluids 5, 407417.
Ligrani, P. M., Westphal, R. V. & Lemos, F. R., 1989 J. Phys E: Sci. Instrum. 22, 262268.
Lim, K. L.: 1985 Wall shear flow. Ph.D. thesis, University of Melbourne, Australia.
Lin, C. C.: 1952 Q. Appl. Maths 10, 295.
Nakayama, A. & Westphal, R. V., 1986 NASA TM-883522.
Pao, Y. H.: 1965 Phys. Fluids 8, 10631108.
Patal, V. C.: 1965 J. Fluid Mech. 23, 185208.
Perry, A. E.: 1982 Hot-Wire Anemometry. Clarendon.
Perry, A. E.: 1987 Perspective in Turbulence Studies (ed. H. U. Meier & P. Bradshaw), pp. 115153. Springer.
Perry, A. E. & Abell, C. J., 1967 J. Fluid Mech. 79, 785799.
Perry, A. E. & Chong, M. S., 1982 J. Fluid Mech. 119, 173217.
Perry, A. E., Henbest, S. M. & Chong, M. S., 1986 J. Fluid Mech. 165, 163199.
Perry, A. E. & Joubert, P. N., 1963 J. Fluid Mech. 17, 193211.
Perry, A. E., Li, J. D., Henbest, S. M. & Marušić, I. 1988a Zoran Zaric Memorial Intl Sem. on Near Wall Turbulence, Dubrovnik. Hemisphere (to appear).
Perry, A. E., Li, J. D. & Marušić, I. 1988b AIAA-88-0219.
Perry, A. E., Lim, K. L., Henbest, S. M. & Chong, M. S., 1983 Proc. 4th Intl Symp. on Turbulent Shear Flow, Karlsruhe, pp. 113117.
Perry, A. E., Lim, K. L. & Henbest, S. M., 1987 J. Fluid Mech. 177, 437466.
Perry, A. E., Schofield, W. H. & Joubert, P. N., 1969 J. Fluid Mech. 37, 383413.
Perry, A. E., Smits, A. J. & Chong, M. S., 1979 J. Fluid Mech. 90, 415431.
Roberts, J. B.: 1973 Aero. J. 77, 406412.
Spalart, P. R.: 1988 J. Fluid Mech. 187, 6198.
Tani, I.: 1987 Perspective in Turbulence Studies (ed. H. U. Meier & P. Bradshaw), pp. 223249. Springer.
Taylor, G. I.: 1938 Proc. R. Soc. Lond. A 164, 476490.
Tennekes, H. & Lumley, J. L., 1972 A First Course in Turbulence. M. I. T. Press.
Townsend, A. A.: 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Uberoi, M. S. & Kovazszay, L. S. G. 1953 Q. Appl. Maths 10, 375393.
Wei, T. & Willmarth, W. W., 1989 J. Fluid Mech. 204, 5795.
Willmarth, W. W. & Bogar, T. J., 1977 Phys. Fluids 20, S9S21.
Willmarth, W. W. & Sharma, L. K., 1984 J. Fluid Mech. 142, 121149.
Wills, J. A. B.: 1964 J. Fluid Mech. 20, 417432.
Wyngaard, J. C.: 1968 J. Sci. Instrum. (2) 1, 11051108.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 J. Fluid Mech. 112, 379396.