Published online by Cambridge University Press: 26 April 2006
A series of experiments were conducted in water to study mixing in the field of a single, two-dimensional vortex. The experimental configuration is that of a laminar line vortex initiated along a diffusion layer between two streams of different scalar concentrations. Measurements of passive scalars in inert and chemically reactive environments were made using a planar laser-induced fluorescence technique. A fast acid/base isothermal reaction was utilized to highlight the molecular mixing. The experimental results show that the mixing enhancement in the presence of a vortex is linearly dependent on the vortex strength and the time elapsed since vortex initiation. In particular, the mixedness, defined as the spatially integrated second moment of concentration field in the vortex, and the spatially averaged scalar dissipation are found to follow this dependence. This variation is mainly attributed to the contact area generation along the diffusion layers between the two streams as a result of inviscid deformations in the vortical flow field. The results presented pertain to mixing in liquids and in the limit of high Schmidt numbers.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.