Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T15:48:27.708Z Has data issue: false hasContentIssue false

Feedback control of vortex shedding at low Reynolds numbers

Published online by Cambridge University Press:  26 April 2006

Kimon Roussopoulos
Affiliation:
Sidney Sussex College, Cambridge CB2 3HU, UK Present address: Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK.

Abstract

This paper describes experiments undertaken to study in detail the control of vortex shedding from circular cylinders at low Reynolds numbers by using feedback to stabilize the wake instability. Experiments have been performed both in a wind tunnel and in an open water channel with flow visualization. It has been found that feedback control is able to delay the onset of the wake instability, rendering the wake stable at Reynolds numbers about 20% higher than otherwise. At higher flow rates, however, it was not possible to use single-channel feedback to stabilize the wake - although, deceptively, it was possible to reduce the unsteadiness recorded by a near-wake sensor. When control is applied to a long span only the region near the control sensor is controlled. The results presented in this paper generally support the analytical results of other researchers.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarède, P. & Monkewitz, P. A. 1992 A model for the formation of oblique shedding and chevron patterns in cylinder wakes. Phys. Fluids A 4, 744756.Google Scholar
Bearman, P. W. 1966 Investigation into the effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. AGARD Conf. Proc. 4, 479507.Google Scholar
Berger, E. 1964 Unterdrückung der laminaren Wirbelströmung und des Turbulenzeinsatzes der Kármánschen Wirbelstrasse im Nachlauf eins schwingenden Zylinders bei klein Reynoldszahlen. In Jahrbuch der Wissenschaftlichen Gesellschaft für Luftund Raumfahrt (WGLR), pp. 164172. Vieweg.
Berger, E. 1967 Suppression of vortex shedding and turbulence behind oscillating cylinders. Phys. Fluids 10, S191S193.Google Scholar
Dines, P. J. 1983 Active control of flame noise. Ph.D. thesis, Cambridge University.
Eisenlohr, H. & Eckelmann, H. 1989 Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number. Phys. Fluids A 1, 189192.Google Scholar
Ffowcs Williams, J. E. 1984 Anti-sound (review lecture). Proc. R. Soc. Lond. A 395, 6388.Google Scholar
Ffowcs Williams, J. E. 1986 The aerodynamic potential of anti-sound. AIAA Paper ICAS-86-0.1.
Ffowcs Williams, J. E. & Huang, X. Y. 1989 Active stabilization of compressor surge. J. Fluid Mech. 204, 245262.Google Scholar
Ffowcs Williams, J. E. & Zhao, B. C. 1989 The active control of vortex shedding. J. Fluids Struct. 3, 115122.Google Scholar
Gaster, M. 1971 Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech. 46, 749756.Google Scholar
Heckl, M. A. 1985 Heat sources in acoustic resonators. Ph.D. thesis, Cambridge University.
Huang, X. Y. 1987 Active control of aerofoil flutter. AIAA J. 25, 11261132.Google Scholar
Huang, X. Y. & Weaver, D. S. 1991 On the active control of shear layer oscillations across a cavity in the presence of pipeline acoustic resonance. J. Fluids Struct. 5, 207219.Google Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473537.Google Scholar
Langhorne, P. J., Dowling, A. P. & Hooper, N. 1990 Practical active control system for combustion oscillations. J. Prop. Power 26, 324333.Google Scholar
Lecordier, J. C., Hamma, L. & Paranthoen, P. 1991 The control of vortex shedding behind heated cylinders at low Reynolds numbers. Exp. Fluids 10, 224229.Google Scholar
Lewit, M. 1988 Aktive minderung von hiebtönen. Projektarbeit im Hauptstudium (diploma dissertation), Inst. für Technische Akustik, T. U. Berlin.
Lewit, M. 1992 Active control of dipole sound from cylinders. Proc. DAGA ’92, Berlin, Germany.
Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 9991006.Google Scholar
Monkewitz, P. A. 1989 Feedback control of global oscillations in fluid systems. AIAA Paper 89-0991.
Monkewitz, P. A., Berger, E. & Schumm, M. 1991 The non-linear stability of spatially inhomogeneous shear flows, including the effect of feedback. Eur. J. Mech. B Fluids 10, 295300.Google Scholar
Noack, B. R., Ohle, F. & Eckelmann, H. 1991 On cell formation in vortex streets. J. Fluid Mech. 227, 293308.Google Scholar
Nozaki, K. & Bekki, N. 1984 Exact solutions of the generalised Ginzburg–Landau equation. J. Phys. Soc. Japan 53, 15811582.Google Scholar
Papangelou, A. 1991 Vortex shedding from slender cones at low Reynolds numbers. Ph.D. thesis, Cambridge University.
Papangelou, A. 1992a A “robust” vortex-shedding anemometer. Exp. Fluids (to appear).Google Scholar
Papangelou, A. 1992b Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 242, 299321.Google Scholar
Price, P. 1956 Suppression of the fluid-induced vibration of circular cylinders. J. Eng. Mech. Div., Proc. ASCE, Paper EM-3 1030.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Tech. Rep. 1191.
Roussopoulos, K. 1992 Aspects of bluff body wake control. In Proc. IUTAM Symp. on Bluff-Body Wakes, Dynamics and Instabilities, Göttingen, Germany 7-11 September 1992 (to appear.)
Schumm, M. 1991 Experimentelle untersuchungen zum problem der absoluten und konvektiven instabilitát in nachlauf zweidimensionaler stumpfer körper. Disseration T. U. Berlin (D 83); also Fortschrittsberichte VDI, Reihe 7, Strömungstechnik Nr. 196. VDI.
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.Google Scholar
Tokumaru, P. T. & Dimotakis, P. E. 1991 Rotary oscillatory control of a cylinder wake. J. Fluid Mech. 224, 7790.Google Scholar
Wehrmann, O. H. 1965 Reduction of velocity fluctuations in a Karman vortex street by a vibrating cylinder. Phys. Fluids 8, 760761.Google Scholar
Williams, D. R. & Amato, C. W. 1989 Unsteady pulsing of cylinder wakes. In Frontiers in Experimental Fluid Mechanics (ed. M. Gad-El-Hak). Lecture Notes in Engineering, vol. 46, pp. 337364. Springer.
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.Google Scholar
Wood, C. J. 1964 The effect of base bleed on a periodic wake. J. R. Aeronaut. Soc. 68, 477482.Google Scholar