Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T09:04:20.925Z Has data issue: false hasContentIssue false

Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction

Published online by Cambridge University Press:  19 July 2013

Brandon Morgan*
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
K. Duraisamy
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
N. Nguyen
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
S. Kawai
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
S. K. Lele
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
*
Current affiliation: Lawrence Livermore National Laboratory, USA. Email address for correspondence: bmorgan1@stanford.edu

Abstract

Large-eddy simulation (LES) is utilized to investigate flow physics and lower-fidelity modelling assumptions in the simulation of an oblique shock impinging on a supersonic turbulent boundary layer (OSTBLI). A database of LES solutions is presented, covering a range of shock strengths and Reynolds numbers, that is utilized as a surrogate-truth model to explore three topics. First, detailed conservation budgets are extracted within the framework of parametric investigation to identify trends that might be used to mitigate statistical (aleatory) uncertainties in inflow conditions. It is found, for instance, that an increase in Reynolds number does not significantly affect length of separation. Additionally, it is found that variation in the shock-generating wedge angle has the effect of increasing the intensity of low-frequency oscillations and moving these motions towards longer time scales, even when scaled by interaction length. Next, utilizing the LES database, a detailed analysis is performed of several existing models describing the low-frequency unsteady motion of the OSTBLI system. Most significantly, it is observed that the length scale of streamwise coherent structures appears to be dependent on Reynolds number, and at the Reynolds number of the present simulations, these structures do not exist on time scales long enough to be the primary cause of low-frequency unsteadiness. Finally, modelling errors associated with turbulence closures using eddy-viscosity and stress-transport-based Reynolds-averaged Navier–Stokes (RANS) simulations are investigated. It is found that while the stress-transport models offer improved predictions, inadequacies in modelling the turbulence transport terms and the isotropic treatment of the dissipation is seen to limit their accuracy.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current affiliation: Institute of Space and Astronautical Science, JAXA, Japan

References

del Álamo, J., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Banerjee, S., Krahl, R., Durst, F. & Zenger, C. 2007 Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8, 127.Google Scholar
Blasius, H. 1913 Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Mitt. Forsch. Arb. Geb. Ing. Wes. 131, 139.Google Scholar
Bookey, P. B., Wyckham, C. & Smits, A. J. 2005a Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. In 35th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2005-4899.CrossRefGoogle Scholar
Bookey, P. B., Wyckham, C., Smits, A. J. & Martin, M. P. 2005b New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA Paper 2005-309.CrossRefGoogle Scholar
Buckingham, E. 1914 On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. 4, 345376.Google Scholar
Christensen, K. T., Wu, Y., Adrian, R. J. & Lai, W. 2004 Statistical imprints of structure in wall turbulence. In 42nd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2004-1116.Google Scholar
Cook, A. W. 2007 Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids 19 (5), 055103.Google Scholar
Debieve, J. F. & Dupont, P. 2009 Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves 19, 499506.CrossRefGoogle Scholar
DeBonis, J. R., Oberkampf, W. L., Wolf, R. T., Orkwis, P. D., Turner, M. G., Babinsky, H. & Benek, J. A. 2012 Assessment of computational fluid dynamics and experimental data for shock boundary-layer interactions. AIAA J. 50 (4), 891903.Google Scholar
Delery, J. & Dussauge, J.-P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19, 453468.Google Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.Google Scholar
Dolling, D. S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow field. AIAA J. 20 (12), 16281634.Google Scholar
Dupont, P., Haddad, C. & Debieve, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.Google Scholar
Dussauge, J. P., Dupont, P. & Debieve, J. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10, 8591.Google Scholar
Ferri, A. 1940 Experimental results with airfoils tested in the high-speed tunnel at Guidonia. NACA Tech. Rep. TM 946 (translation).Google Scholar
Gaitonde, D. V. & Visbal, M. R. 1998 High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. Air Force Research Laboratory Tech. Rep. AFRL-VA-WP-TR-1998-3060.Google Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 497–425.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W. T., Longmire, E. K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.Google Scholar
Garnier, E. 2009 Stimulated detached eddy simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19, 479486.Google Scholar
Hadjadj, A., Larsson, J., Morgan, B., Nichols, J. W. & Lele, S. K. 2010 Large-eddy simulation of shock/boundary-layer interaction. In Center for Turbulence Research Proceedings of the Summer Program 2010. Stanford University.Google Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modeling. J. Fluid Mech. 305, 185218.Google Scholar
Humble, R. A., Elsinga, G. E., Scarano, F. & van Oudheusden, B. W. 2009a Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.Google Scholar
Humble, R. A., Elsinga, G. E., Scarano, F. & van Oudheusden, B. W. 2009b Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.Google Scholar
Humble, R. A., Scarano, F. & van Oudheusden, B. W. 2007 Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp. Fluids 43, 173183.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Iizuka, N. 2006 Study of Mach number effect on the dynamic stability of a blunt re-entry capsule. PhD thesis, University of Tokyo, Tokyo.Google Scholar
Jaunet, V., Debieve, J. F. & Dupont, P. 2012 Experimental investigation of an oblique shock reflection with separation over a heated wall. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA Paper 2012-1095.Google Scholar
Kawai, S. & Lele, S. K. 2008 Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J. Comput. Phys. 227 (22), 94989526.CrossRefGoogle Scholar
Kawai, S. & Lele, S. K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.CrossRefGoogle Scholar
Kawai, S., Shankar, S. K. & Lele, S. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.Google Scholar
Knight, D. D. & Degrez, G. 1998 Shock wave boundary layer interactions in high Mach number flows: a critical survey of current numerical prediction capabilities. Advisory Rep. 319. AGARD 2, 1.1–1.35.Google Scholar
Knight, D., Yan, H., Panaras, A. & Zheltovodov, A. 2002 CFD validation for shock wave turbulent boundary layer interactions. In 40th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2002-0437.Google Scholar
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283325.Google Scholar
Lapsa, A. P. & Dahm, W. J. A. 2010 Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer. Exp. Fluids 50, 89108.Google Scholar
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537566.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lumley, J. & Newman, G. 1977 The design and application of upwind schemes on unstructured meshes. J. Fluid Mech. 82, 161178.Google Scholar
Mani, A., Larsson, J. & Moin, P. 2009 Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks. J. Comput. Phys. 228 (19), 73687374.Google Scholar
Morgan, B. 2012 Large-eddy simulation of shock/turbulence interaction in hypersonic vehicle isolator systems. PhD thesis, Stanford University.Google Scholar
Morgan, B., Kawai, S. & Lele, S. K. 2011a A parametric investigation of oblique shockwave/turbulent boundary layer interaction using LES. In 41st AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2011-3430.CrossRefGoogle Scholar
Morgan, B., Larsson, J., Kawai, S. & Lele, S. K. 2011b Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49 (3), 582597.Google Scholar
Morgan, B. & Lele, S. K. 2011 Turbulence budgets in oblique shockwave/turbulent boundary layer interactions. In Center for Turbulence Research Annual Research Briefs, pp. 7586. Stanford University.Google Scholar
Morrison, J. H. 1992 A compressible Navier–Stokes solver with two-equation and Reynolds stress turbulence closure models. NASA Tech. Rep. CR-4440.Google Scholar
Obayashi, S., Fuji, K. & Gavali, S. 1988 Navier–Stokes simulation of wind-tunnel flow using LU-ADI factorization algorithm. NASA Tech. Rep. TM-100042.Google Scholar
Pecnik, R., Terrapon, V. E., Ham, F. & Iaccarino, G. 2009 Full system scramjet simulation. In Center for Turbulence Research Annual Briefs. Stanford University.Google Scholar
Piponniau, S., Dussauge, J. P., Debieve, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.Google Scholar
Pirozzoli, S., Beer, A., Bernardini, M. & Grasso, F. 2009 Computational analysis of impinging shock-wave boundary layer interaction under conditions of incipient separation. Shock Waves 19, 487497.Google Scholar
Pirozzoli, S. & Bernardini, M. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.Google Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at $M= 2. 25$ . Phys. Fluids 18, 065113.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M= 2. 25$ . Phys. Fluids 16 (3), 530545.Google Scholar
Pirozzoli, S., Larsson, J., Nichols, J. W., Bernardini, M., Morgan, B. & Lele, S. K. 2010 Analysis of unsteady effects in shock/boundary layer interactions. In Center for Turbulence Research Proceedings of the Summer Program 2010. Stanford University.Google Scholar
Plotkin, K. J. 1975 Shock wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13 (8), 10361040.Google Scholar
Poggie, J. & Smits, A. J. 2005 Experimental evidence for Plotkin model of shock unsteadiness in separated flow. Phys. Fluids 17, 018107.Google Scholar
Robinet, J.-Ch. 2007 Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85112.Google Scholar
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer.Google Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.Google Scholar
Souverein, L. J. 2010 On the scaling and unsteadiness of shock induced separation. PhD thesis, Université de Provence Aix–Marseille I.Google Scholar
Spalart, P. R. & Allmaras, S. R. 1994 A one-equation turbulence model for aero-dynamic flows. Rech. Aerosp. 1, 521.Google Scholar
Stewartson, K. 1974 Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145239.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2008 Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. In 38th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2008-4170.Google Scholar
Touber, E. & Sandham, N. D. 2009a Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19, 469478.Google Scholar
Touber, E. & Sandham, N. D. 2009b Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 73107.Google Scholar
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modeling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.Google Scholar
Urbin, G. & Knight, D. 2001 Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J. 39 (7), 12881295.CrossRefGoogle Scholar
Wilcox, D. C. 2006 Turbulence Modeling for CFD, 3rd edn. DCW Industries, Inc.Google Scholar