Published online by Cambridge University Press: 25 February 1999
Gravitational settling of dense particles through density interfaces is common in many environmental and engineering flow situations, yet very little research has been done to understand the mechanics of particle–stratification interactions. To this end, a detailed experimental study was carried out to investigate the settling of solid spherical particles through density interfaces. In these experiments, the solid particles first descended through a deep homogeneous layer, entered a thick pycnocline and then descended to another denser homogeneous layer. It was found that the stratification has a significant impact on the settling of particles in the approximate parameter range 1.5<Re1<15, where Re1=U1dp/v is the Reynolds number based on the particle entry velocity U1 to the stratified layer, dp is the particle diameter and v is the kinematic viscosity of the fluid. In the above parameter range, the particles tend to drag lighter fluid from the upper layer into the stratified region, thus increasing the drag on them substantially and decelerating them within the stratified layer. In the Froude number Fr1=U1/Ndp range investigated, 3<Fr1<10, where N is the buoyancy frequency of the stratified layer, the drag coefficient was found to be an order of magnitude larger than its homogeneous-fluid counterpart. The internal-wave contribution to the drag was small compared to that of fluid dragged into the stratified layer, but substantial internal-wave activity could be detected after the fluid dragged from the lighter layer (the caudal fluid) detached from the particle.
The minimum velocity of the solid particle within the stratified layer was found to be given by Umin/U1= 5.5×10−2Fr9/101, occurring on a time scale tmin/ (d2p/v)= 1.4×102Re−1.71, where tmin was measured relative to the time of the particle's entry into the stratified region. Outside the parameter range 1.5<Re1<15, the drag on the sphere in the density-stratified layer could be approximated to that in a homogeneous fluid, whence the bringing of lighter fluid into the stratified layer as a tail behind the descending particle was found to be negligible.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.