Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T09:47:43.195Z Has data issue: false hasContentIssue false

Heat transfer in a cylindrical cavity

Published online by Cambridge University Press:  29 March 2006

J. L. Duda
Affiliation:
Process Fundamentals Research Laboratory, The Dow Chemical Company, Midland, Michigan
J. S. Vrentas
Affiliation:
Process Fundamentals Research Laboratory, The Dow Chemical Company, Midland, Michigan

Abstract

An analytical solution is developed to describe the unsteady-state heat transfer to a cylindrical cavity with circulating flow induced by a moving wall. The previously derived velocity field at low Reynolds numbers is incorporated into the energy equation, and the case of heat transfer to a fluid segmented by highly conducting plugs flowing in a tube with constant wall temperature is considered. Calculations of temperature distributions, average temperatures, and heat transfer coefficients as functions of time and Péclet number are presented for a specific cavity geometry, and the degree of enhancement in heat transfer caused by the recirculating flow is determined.

The methods developed in this study may be useful in obtaining analytical solutions to a variety of closed-streamline heat and mass transfer problems with known velocity fields.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, W. F. & De la Cuesta, H. 1963 J. Math. Phys. 42, 301.
Burggraf, O. R. 1966 J. Fluid Mech. 24, 113.
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids. Oxford University Press.
Cooke, R. G. 1953 Linear Operators. London: Macmillan.
De la Cuesta, H. & Ames, W. F. 1963 Ind. Engng Chem. Fundamentals, 2, 21.
Dennis, S. C. R. & Poots, G. 1956 Quart. Appl. Math. 14, 231.
Dennis, S. C. R., Mercer, A. McD. & Poots, G. 1959 Quart. Appl. Math. 17, 285.
Duda, J. L. & Vrentas, J. S. 1970 J. Fluid Mech. 45, 247.
Eckert, E. R. G. & Drake, R. M. 1959 Heat and Mass Transfer. New York: McGraw-Hill.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Goldfarb, D. & Lapidus, L. 1968 Ind. Engng Chem. Fundamentals, 7, 142.
Hadamard, J. 1911 Comptes Rendus, 152, 1735.
Ho, C. Y., Nardacci, J. L. & Nissan, A. H. 1964 A.I.Ch.E.J. 10, 194.
Jarrett, E. L. & Sweeney, T. L. 1967 A.I.Ch.E.J. 13, 797.
Jeffreys, H. & Jeffreys, B. S. 1956 Methods of Mathematical Physics. Cambridge University Press.
Johns, L. E. & Beckmann, R. B. 1966 A.I.Ch.E.J. 12, 10.
Kantorovich, L. V. & Krylov, V. I. 1958 Approximate Methods of Higher Analysis. New York: Interscience.
Kronig, R. & Brink, J. C. 1950 Appl. Sci. Res. A2, 142.
Lew, H. S. & Fung, Y. C. 1969 Biorheology, 6, 109.
Lighthill, M. J. 1968 J. Fluid Mech. 34, 113.
McAdams, W. H. 1954 Heat Transmission. New York: McGraw-Hill.
Oliver, D. R. & Wright, S. J. 1964 Brit. Chem. Engng, 9, 590.
Oliver, D. R. & Young Hoon, A. 1968 Trans. Inst. Chem. Engng, 46, T 116.
Poots, G. 1958 Quart. J. Mech. Appl. Math. 11, 257.
Prothero, J. & Burton, A. C. 1961 Biophys. J. 1, 565.
Singh, S. N. 1958 Appl. Sci. Res. A, 7, 325.
Whittaker, E. T. & Watson, G. N. 1927 Modern Analysis. Cambridge University Press.
Wilkes, J. O. & Churchill, S. W. 1966 A.I.Ch.E.J. 12, 161.