Published online by Cambridge University Press: 08 October 2003
To clarify the function of gravity in the shallow-water theory of the interfacial instability in aluminium reduction cells, we analyse the existing long-wave theory of the instability in the limit of vanishing gravitational acceleration $g$. The flow then has an inner and outer structure, with gravity remaining essential within thin layers coating the cell walls. In those thin wall layers, the growing disturbance takes the form of a trapped magnetogravity wave propagating horizontally on the internal interface, and the growth rate $\sigma$ is determined by the coupling of that edge wave to the large-scale flow in the core of the cell; that coupling is expressed as an oblique-derivative problem for the core flow. Although $\sigma$ is asymptotically independent of $g$, gravity is essential to the long-wave instability because a correlation imposed by the magneto-gravity waves is essential for the disturbance to extract power from the mean state.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.