Published online by Cambridge University Press: 23 February 2018
This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble–ice distance. Fractures develop from the top of the ice plate, i.e. the ice–air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble–ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble–ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.