Published online by Cambridge University Press: 28 March 2006
A buoyancy-driven system can be unstable due to two different mechanisms—one mechanical and the other involving buoyancy forces. The mechanical instability is of the type normally studied in connexion with the Orr-Sommerfeld equation. The buoyancy-driven instability is rather different and is related to the ‘Coriolis’-driven instability of rotating fluids. In this paper, the stability of a buoyancy-driven system, recently called a ‘buoyancy layer’, is examined for the whole range of Prandtl numbers, s. The buoyancy-driven instability becomes increasingly important as the Prandtl number is increased and so particular interest is attached to the limit in which the Prandtl number tends to infinity. In this limit, the system is neutrally stable to first order, but second-order effects render the flow unstable at a Reynolds number of order σ-½. Consequences of the results for the stability of convection in a vertical slot are examined.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.