Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-21T13:54:30.310Z Has data issue: false hasContentIssue false

Instability of the tip vortices shed by an axial-flow turbine in uniform flow

Published online by Cambridge University Press:  11 June 2021

Antonio Posa*
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, 00128Roma, Italy
Riccardo Broglia
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, 00128Roma, Italy
Elias Balaras
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street, N.W., Washington, DC20052, USA
*
Email address for correspondence: antonio.posa@inm.cnr.it

Abstract

Large-eddy simulation is utilized to reproduce the instability of the tip vortices shed from the blades of an axial-flow turbine. The oscillations of their helical trajectories trigger mutual interaction between them. This accelerates the process of their destabilization, leading to leapfrogging and eventually to breakdown into smaller structures and loss of coherence, initiating wake contraction and momentum recovery from the outer radii towards the wake core. A strong correlation of the tip vortices instability with the behaviour of the Reynolds stresses and turbulence production is observed. In particular, the turbulent shear stress tied to the fluctuations of the radial and axial velocity components reveals the significant role of the interaction of each tip vortex with the outer region of the wake of the preceding blade, creating a ‘bridge’ between neighbouring tip vortices. Such an interaction enhances the process of mutual inductance between them, promoting production of turbulence and destabilization of the coherent structures. The latter results in increasing oscillations of the radial location of their cores and in a significant jump of the normal turbulent stress of radial velocity within them. Further downstream, the instability of the tip vortices triggers intense mixing phenomena between the outer free stream and the inner wake flow, leading the process of momentum recovery and wake contraction.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdulqadir, S.A., Iacovides, H. & Nasser, A. 2017 The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy 119, 767799.CrossRefGoogle Scholar
Ahmadi, M.H.B. & Yang, Z. 2020 The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine. Renew. Energy 151, 10081015.CrossRefGoogle Scholar
Amiri, M.M., Shadman, M. & Estefen, S.F. 2020 URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models. Energy 213, 118766.CrossRefGoogle Scholar
Araya, D.B., Colonius, T. & Dabiri, J.O. 2017 Transition to bluff-body dynamics in the wake of vertical-axis wind turbines. J. Fluid Mech. 813, 346381.CrossRefGoogle Scholar
Balaras, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in large–eddy simulations. Comput. Fluids 33 (3), 375404.CrossRefGoogle Scholar
Bhaganagar, K. & Debnath, M. 2014 Implications of stably stratified atmospheric boundary layer turbulence on the near-wake structure of wind turbines. Energies 7 (9), 57405763.CrossRefGoogle Scholar
Chamorro, L.P., Hill, C., Morton, S., Ellis, C., Arndt, R.E.A. & Sotiropoulos, F. 2013 On the interaction between a turbulent open channel flow and an axial-flow turbine. J. Fluid Mech. 716, 658670.CrossRefGoogle Scholar
Dasari, T., Wu, Y., Liu, Y. & Hong, J. 2019 Near-wake behaviour of a utility-scale wind turbine. J. Fluid Mech. 859, 204246.CrossRefGoogle Scholar
Di Felice, F., Di Florio, D., Felli, M. & Romano, G.P. 2004 Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry. J. Ship Res. 48 (2), 168190.CrossRefGoogle Scholar
Ducros, F., Nicoud, F. & Poinsot, T. 1998 Wall-adapting local eddy-viscosity models for simulations in complex geometries. Numer. Meth. Fluid Dyn. VI, 293299.Google Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.CrossRefGoogle Scholar
Felli, M. & Di Felice, F. 2005 Propeller wake analysis in nonuniform inflow by LDV phase sampling techniques. J. Mar. Sci. Technol. 10 (4), 159172.CrossRefGoogle Scholar
Felli, M., Di Felice, F., Guj, G. & Camussi, R. 2006 Analysis of the propeller wake evolution by pressure and velocity phase measurements. Exp. Fluids 41 (3), 441451.CrossRefGoogle Scholar
Felli, M., Guj, G. & Camussi, R. 2008 Effect of the number of blades on propeller wake evolution. Exp. Fluids 44 (3), 409418.CrossRefGoogle Scholar
Foti, D., Yang, X., Guala, M. & Sotiropoulos, F. 2016 Wake meandering statistics of a model wind turbine: insights gained by large eddy simulations. Phys. Rev. Fluids 1 (4), 044407.CrossRefGoogle Scholar
Fukagata, K. & Kasagi, N. 2002 Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181 (2), 478498.CrossRefGoogle Scholar
Gaurier, B., Germain, G., Facq, J.V., Johnstone, C.M., Grant, A.D., Day, A.H., Nixon, E., Di Felice, F. & Costanzo, M. 2015 Tidal energy “Round Robin” tests comparisons between towing tank and circulating tank results. Intl J. Mar. Energy 12, 87109.CrossRefGoogle Scholar
Gu, J., Cai, F., Müller, N., Zhang, Y. & Chen, H. 2020 Two-way fluid-solid interaction analysis for a horizontal axis marine current turbine with LES. Water (Switzerland) 12 (1), 98.Google Scholar
Heisel, M., Hong, J. & Guala, M. 2018 The spectral signature of wind turbine wake meandering: A wind tunnel and field-scale study. Wind Energy 21 (9), 715731.CrossRefGoogle Scholar
Hong, J., Toloui, M., Chamorro, L.P., Guala, M., Howard, K., Riley, S., Tucker, J. & Sotiropoulos, F. 2014 Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nat. Commun. 5, 4216.CrossRefGoogle ScholarPubMed
Howard, K.B., Singh, A., Sotiropoulos, F. & Guala, M. 2015 On the statistics of wind turbine wake meandering: an experimental investigation. Phys. Fluids 27 (7), 075103.CrossRefGoogle Scholar
Ivanell, S., Mikkelsen, R., Sørensen, J.N. & Henningson, D. 2010 Stability analysis of the tip vortices of a wind turbine. Wind Energy 13 (8), 705715.CrossRefGoogle Scholar
Kang, S., Borazjani, I., Colby, J.A. & Sotiropoulos, F. 2012 Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine. Adv. Water Resour. 39, 3343.CrossRefGoogle Scholar
Kang, S., Yang, X. & Sotiropoulos, F. 2014 On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J. Fluid Mech. 744, 376403.CrossRefGoogle Scholar
Li, Y., Paik, K.-J., Xing, T. & Carrica, P.M. 2012 Dynamic overset CFD simulations of wind turbine aerodynamics. Renew. Energy 37 (1), 285298.CrossRefGoogle Scholar
Lignarolo, L.E.M., Ragni, D., Krishnaswami, C., Chen, Q., Simão Ferreira, C.J. & van Bussel, G.J.W. 2014 Experimental analysis of the wake of a horizontal-axis wind-turbine model. Renew. Energy 70, 3146.CrossRefGoogle Scholar
Lignarolo, L.E.M., Ragni, D., Scarano, F., Simão Ferreira, C.J. & Van Bussel, G.J.W. 2015 Tip-vortex instability and turbulent mixing in wind-turbine wakes. J. Fluid Mech. 781, 467493.CrossRefGoogle Scholar
Lin, X.-F., Zhang, J.-S., Zhang, Y.-Q., Zhang, J. & Liu, S. 2019 Comparison of actuator line method and full rotor geometry simulations of the wake field of a tidal stream turbine. Water (Switzerland) 11 (3), 560.Google Scholar
Liu, Y., Xiao, Q., Incecik, A. & Peyrard, C. 2019 Aeroelastic analysis of a floating offshore wind turbine in platform-induced surge motion using a fully coupled CFD-MBD method. Wind Energy 22 (1), 120.CrossRefGoogle Scholar
Liu, Y., Xiao, Q., Incecik, A., Peyrard, C. & Wan, D. 2017 Establishing a fully coupled CFD analysis tool for floating offshore wind turbines. Renew. Energy 112, 280301.CrossRefGoogle Scholar
Lu, H. & Porté-Agel, F. 2011 Large–eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids 23 (6), 065101.CrossRefGoogle Scholar
Lust, E.E., Flack, K.A. & Luznik, L. 2018 Survey of the near wake of an axial-flow hydrokinetic turbine in quiescent conditions. Renew. Energy 129, 92101.CrossRefGoogle Scholar
Lust, E.E., Flack, K.A. & Luznik, L. 2020 Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves. Renew. Energy 146, 21992209.CrossRefGoogle Scholar
Martínez-Tossas, L.A., Churchfield, M.J. & Leonardi, S. 2015 Large eddy simulations of the flow past wind turbines: actuator line and disk modeling. Wind Energy 18 (6), 10471060.CrossRefGoogle Scholar
Medici, D. 2005 Experimental studies of wind turbine wakes – power optimisation and meandering. PhD thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.Google Scholar
Mittal, A., Sreenivas, K., Taylor, L.K., Hereth, L. & Hilbert, C.B. 2016 Blade-resolved simulations of a model wind turbine: effect of temporal convergence. Wind Energy 19 (10), 17611783.CrossRefGoogle Scholar
Mo, J.-O., Choudhry, A., Arjomandi, M., Kelso, R. & Lee, Y.-H. 2013 a Effects of wind speed changes on wake instability of a wind turbine in a virtual wind tunnel using large eddy simulation. J. Wind Engng Ind. Aerodyn. 117, 3856.CrossRefGoogle Scholar
Mo, J.-O., Choudhry, A., Arjomandi, M. & Lee, Y.-H. 2013 b Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model. J. Wind Engng Ind. Aerodyn. 112, 1124.CrossRefGoogle Scholar
Na, J.S., Koo, E., Ko, S.C., Linn, R., Mu noz-Esparza, D., Jin, E.K. & Lee, J.S. 2019 Stochastic characteristics for the vortical structure of a 5-MW wind turbine wake. Renew. Energy 133, 12201230.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Nuernberg, M. & Tao, L. 2018 Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh. Ocean Engng 147, 629646.CrossRefGoogle Scholar
O'Brien, J.M., Young, T.M., Early, J.M. & Griffin, P.C. 2018 An assessment of commercial CFD turbulence models for near wake HAWT modelling. J. Wind Engng Ind. Aerodyn. 176, 3253.CrossRefGoogle Scholar
Okulov, V.L., Kabardin, I.K., Mikkelsen, R.F., Naumov, I.V. & Sørensen, J.N. 2018 Helical self-similarity of tip vortex cores. J. Fluid Mech. 859, 10841097.CrossRefGoogle Scholar
Okulov, V.L., Naumov, I.V., Mikkelsen, R.F., Kabardin, I.K. & Sørensen, J.N. 2014 A regular Strouhal number for large-scale instability in the far wake of a rotor. J. Fluid Mech. 747, 369380.CrossRefGoogle Scholar
Okulov, V.L., Sørensen, J.N. & Wood, D.H. 2015 The rotor theories by Professor Joukowsky: vortex theories. Prog. Aerosp. Sci. 73, 1946.CrossRefGoogle Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.CrossRefGoogle Scholar
Ouro, P., Harrold, M., Stoesser, T. & Bromley, P. 2017 Hydrodynamic loadings on a horizontal axis tidal turbine prototype. J. Fluids Struct. 71, 7895.CrossRefGoogle Scholar
Ouro, P. & Stoesser, T. 2019 Impact of environmental turbulence on the performance and loadings of a tidal stream turbine. Flow Turbul. Combust. 102 (3), 613639.CrossRefGoogle Scholar
Posa, A. 2020 a Dependence of the wake recovery downstream of a vertical axis wind turbine on its dynamic solidity. J. Wind Engng Ind. Aerodyn. 202, 104212.CrossRefGoogle Scholar
Posa, A. 2020 b Influence of tip speed ratio on wake features of a vertical axis wind turbine. J. Wind Engng Ind. Aerodyn. 197, 104076.CrossRefGoogle Scholar
Posa, A. & Balaras, E. 2020 A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution. J. Fluid Mech. 884, A41.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2019 a LES study of the wake features of a propeller in presence of an upstream rudder. Comput. Fluids 192, 104247.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2020 a Flow over a hydrofoil in the wake of a propeller. Comput. Fluids 213, 104714.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2020 b The wake structure of a propeller operating upstream of a hydrofoil. J. Fluid Mech. 904, A12.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2021 The wake flow downstream of a propeller-rudder system. Intl J. Heat Fluid Flow 87, 108765.CrossRefGoogle Scholar
Posa, A., Broglia, R., Felli, M., Falchi, M. & Balaras, E. 2019 b Characterization of the wake of a submarine propeller via Large–Eddy Simulation. Comput. Fluids 184, 138152.CrossRefGoogle Scholar
Quaranta, H.U., Bolnot, H. & Leweke, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687716.CrossRefGoogle Scholar
Quaranta, H.U., Brynjell-Rahkola, M., Leweke, T. & Henningson, D.S. 2019 Local and global pairing instabilities of two interlaced helical vortices. J. Fluid Mech. 863, 927955.CrossRefGoogle Scholar
Regodeseves, P.G. & Morros, C.S. 2020 Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: flow through the rotor and wake. Energy 202, 117674.CrossRefGoogle Scholar
Rossi, T. & Toivanen, J. 1999 Parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (5), 17781793.CrossRefGoogle Scholar
Santoni, C., Carrasquillo, K., Arenas-Navarro, I. & Leonardi, S. 2017 Effect of tower and nacelle on the flow past a wind turbine. Wind Energy 20 (12), 19271939.CrossRefGoogle Scholar
Sarmast, S., Dadfar, R., Mikkelsen, R.F., Schlatter, P., Ivanell, S., Sørensen, J.N. & Henningson, D.S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.CrossRefGoogle Scholar
Sedaghatizadeh, N., Arjomandi, M., Kelso, R., Cazzolato, B. & Ghayesh, M.H. 2019 The effect of the boundary layer on the wake of a horizontal axis wind turbine. Energy 182, 12021221.CrossRefGoogle Scholar
Sherry, M., Nemes, A., Lo Jacono, D., Blackburn, H.M. & Sheridan, J. 2013 The interaction of helical tip and root vortices in a wind turbine wake. Phys. Fluids 25 (11), 117102.CrossRefGoogle Scholar
Sørensen, J.N., Mikkelsen, R.F., Henningson, D.S., Ivanell, S., Sarmast, S. & Andersen, S.J. 2015 Simulation of wind turbine wakes using the actuator line technique. Phil. Trans. R. Soc. A 373 (2035), 20140071.CrossRefGoogle ScholarPubMed
Sørensen, J.N. & Shen, W.Z. 2002 Numerical modeling of wind turbine wakes. Trans. ASME: J. Fluids Engng 124 (2), 393399.Google Scholar
Stella, A., Guj, G., Di Felice, F. & Elefante, M. 2000 Experimental investigation of propeller wake evolution by means of LDV and flow visualizations. J. Ship Res. 44 (3), 155169.CrossRefGoogle Scholar
Thé, J. & Yu, H. 2017 A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy 138, 257289.CrossRefGoogle Scholar
Tian, W., Mao, Z. & Ding, H. 2018 Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. Intl J. Nav. Arch. Ocean Engng 10 (6), 782793.CrossRefGoogle Scholar
Tian, W., Ni, X., Mao, Z. & Zhang, T. 2020 Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine. Renew. Energy 158, 3748.CrossRefGoogle Scholar
Tian, W., VanZwieten, J.H., Pyakurel, P. & Li, Y. 2016 Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine. Energy 111, 104116.CrossRefGoogle Scholar
Tran, T.-T. & Kim, D.-H. 2015 The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis. J. Wind Engng Ind. Aerodyn. 142, 6581.CrossRefGoogle Scholar
Troldborg, N., Sørensen, J.N. & Mikkelsen, R. 2010 Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13 (1), 8699.CrossRefGoogle Scholar
Van Kan, J.J.I.M. 1986 A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (3), 870891.CrossRefGoogle Scholar
Widnall, S.E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (4), 641663.CrossRefGoogle Scholar
Yang, J. & Balaras, E. 2006 An embedded-boundary formulation for large–eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215 (1), 1240.CrossRefGoogle Scholar
Yang, J., Preidikman, S. & Balaras, E. 2008 A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies. J. Fluids Struct. 24 (2), 167182.CrossRefGoogle Scholar
Yang, X., Hong, J., Barone, M. & Sotiropoulos, F. 2016 Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines. J. Fluid Mech. 804, 90115.CrossRefGoogle Scholar
Zaghi, S., Muscari, R. & Di Mascio, A. 2016 Assessment of blockage effects in wind tunnel testing of wind turbines. J. Wind Engng Ind. Aerodyn. 154, 19.CrossRefGoogle Scholar
Zhong, H., Du, P., Tang, F. & Wang, L. 2015 Lagrangian dynamic large–eddy simulation of wind turbine near wakes combined with an actuator line method. Appl. Energy 144, 224233.CrossRefGoogle Scholar
Zhong, J. & Li, J. 2020 Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil. Energy 206, 118182.CrossRefGoogle Scholar