Published online by Cambridge University Press: 26 March 2010
The deformation of a cavitation bubble in shear and extensional flows is studied numerically. The Navier–Stokes equations are solved to observe the three-dimensional behaviour of the bubble as it grows and collapses. During the collapse phase of the bubble, two re-entrant jets are observed on two sides of the bubble. The re-entrant jets are not the result of interaction with a solid wall or free surface; rather, they are formed due to interaction of the bubble with the background flow. Effects of the viscosity, surface tension and shear rate on the formation and strength of re-entrant jets are investigated. Re-entrant jets with enough strength break up the bubble into smaller bubbles. Post-processing and analysis of the results are done to cast the disturbance by the bubble on the liquid velocity field in terms of spherical harmonics. It is found that quadrupole moments are created in addition to the monopole source.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.