No CrossRef data available.
Published online by Cambridge University Press: 30 July 2013
We consider the three-dimensional, cylindrical equivalent to the problem of instability between two inviscid fluids due to a velocity shear between them, known as Kelvin–Helmholtz instability. We begin by developing the solution to the linearized equations for a rotating fluid. While this solution is not in itself new, we carry the analysis further than previous treatments by including non-zero modes and considering the effect of the surface tension, particularly on the dispersion relation. We then consider a system of two fluids rotating at different rates and derive its dispersion relation, which is rather more complicated than that for a single rotating fluid. While a general analytic solution is unattainable, by investigating some special cases we show that the fundamental mode is always stable, and that Kelvin–Helmholtz instability also exists for the system. We compare our results with experiments and conclude by suggesting some hypothetical links between the theory and nature.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.