Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-01T02:12:54.407Z Has data issue: false hasContentIssue false

Joint statistics of a passive scalar and its dissipation in turbulent flows

Published online by Cambridge University Press:  26 April 2006

F. Anselmet
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Unité Mixte N° 380033 Université d’Aix-Marseille II/CNRS, 12, avenue Général Leclerc, 13003 Marseille, France
H. Djeridi
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Unité Mixte N° 380033 Université d’Aix-Marseille II/CNRS, 12, avenue Général Leclerc, 13003 Marseille, France
L. Fulachier
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Unité Mixte N° 380033 Université d’Aix-Marseille II/CNRS, 12, avenue Général Leclerc, 13003 Marseille, France

Abstract

The statistical relationship between a passive scalar and its dissipation is important for both a basic understanding of turbulence small-scale properties and for various aspects of turbulent combustion modelling. This problem is studied in two different flows through spectral analysis as well as probability density functions using temperature as a passive scalar. Particular attention is paid to the experimental determination of the three squared derivatives involved in the temperature dissipation. As a first step, it is found that basic properties such as the correlation coefficient between temperature and its dissipation are strongly related to the asymmetry of the scalar fluctuations, so that the usually assumed statistical independence between these variables is not justified. These trends are the same for the two flows investigated here, a boundary layer and a jet. This connection appears to be related to fluctuations of small amplitude for both quantities which are associated with relatively low frequencies lying between the integral scale and the Taylor microscale. In regions where the temperature skewness factor is nearly zero, the correlation coefficient is also very small, and several tests show that the assumption of independence is then fully justified. Thus, the main parameter influencing joint statistics of temperature and its dissipation is the asymmetric feature of temperature fluctuations, but the asymmetry of the longitudinal temperature derivative, which results from the flow boundary conditions and is usually felt through the presence of the so-called temperature ramps, is also involved. Even though the magnitude of the derivative skewness factor is almost uniformly distributed in both flows, the secondary effect becomes the dominant one in flow regions where the influence of the temperature asymmetry is relatively weak.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amielh, M., Djeridane, T., Anselmet, F. & Fulachier, L. 1994 Velocity near-field of variable density turbulent jets. Intl J. Heat Mass Transfer (to appear).Google Scholar
Anselmet, F. & Antonia, R. A. 1985 Joint statistics between temperature and its dissipation in a turbulent jet. Phys. Fluids 28, 10481054.Google Scholar
Anselmet, F., Djeridi, H. & Fulachier, L. 1994 Simultaneous measurements of temperature and its dissipation using pairs of parallel cold wires. Exps. Fluids (submitted).Google Scholar
Antonia, R. A., Browne, L. W. B., Britz, D. & Chambers, A. J. 1984 A comparison of temporal and spatial temperature increments in a turbulent plane jet. Phys. Fluids 27, 8793.Google Scholar
Antonia, R. A., Fulachier, L., Krishnamoorthy, L. V., Benabid, T. & Anselmet, F. 1988 Influence of wall suction on the organized motion in a turbulent boundary layer. J. Fluid Mech. 190, 217240.Google Scholar
Antonia, R. A. & Mi, J. 1993 Temperature dissipation in a turbulent round jet. J. Fluid Mech. 250, 531551.Google Scholar
Antonia, R. A., Prabhu, A. & Stephenson, S. E. 1975 Conditionally sampled measurements in a heated turbulent jet. J. Fluid Mech. 72, 455480.Google Scholar
Antonia, R. A. & Van Atta, C. W. 1978 Structure functions of temperature fluctuations in turbulent shear flows. J. Fluid Mech. 84, 561580.Google Scholar
Bilger, R. W. 1976 Turbulent jet diffusion flames. Prog. Energy Combust. Sci. 1, 87109.Google Scholar
Bilger, R. W. 1980 Turbulent flows with non premixed reactants. In Topics in Applied Physics, vol. 44 (ed. P. A. Libby & F. A. Williams), pp. 65113. Springer.
Bilger, R. W. 1989 Turbulent diffusion flames. Ann. Rev. Fluid Mech. 21, 101135.Google Scholar
Bilger, R. W. 1993 Conditional moment closure for turbulent reacting flow. Phys. Fluids A 5, 436444.Google Scholar
Borghi, R. & Gonzalez, M. 1986 Application of Lagrangian models to turbulent combustion. Combust. Flame 63, 239250.Google Scholar
Bray, K. M. C. 1980 Turbulent flows with premixed reactants. In Topics in Applied Physics, vol. 44. (ed. P. A. Libby & F. A. Williams), pp. 115183. Springer.
Chen, H., Chen, S. & Kraichnan, R. H. 1989 Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63, 26572660.Google Scholar
Djeridi, H. 1992 Etude de la liaison entre un scalaire passif et sa dissipation en écoulements turbulents libre et de paroi. PhD thesis, Université d’Aix-Marseille II.
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.Google Scholar
Fulachier, L. 1972 Contribution à l’étude des analogies des champs dynamique et scalaire dans une couche limite turbulente. Effet de l’aspiration. Thèse de Doctorat ès Sciences Physiques, Université de Provence, Marseille.
Fulachier, L. 1978 Hot-wire measurements in low-speed heated flows. In Proc. Dynamic Flow Conf., Marseille, pp. 465488. PO Box 121, DK-2740, Skovlunde, Denmark.
Gagne, Y. 1987 Etude expérimentale de l’intermittence interne et des singularités dans le plan complexe en turbulence développée, Thèse de Doctorat ès Science, INP, Grenoble.
Gao, F. 1991 Mapping closure and non-gaussianity of the scalar probability density functions in isotropic turbulence. Phys. Fluids A 3, 24382444.Google Scholar
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.Google Scholar
Hannart, B., Gagne, Y. & Hopfinger, E. J. 1985 Domaine d’existence de l’isotropie dans une couche de mélange turbulente. C.R. Acad. Sci. Paris II, 301, 669674.Google Scholar
Jacquin, L. 1983 Etude du comportement intermittent de la dissipation dans une couche limite à grand nombre de Reynolds, PhD thesis, Université d’Aix-Marseille II.
Jayesh & Warhaft, Z. 1992 Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence. Phys. Fluids A 4, 22922307.Google Scholar
Klewicki, J. C. & Falco, R. E. 1990 On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J. Fluid Mech. 219, 119142.Google Scholar
Krishnamoorthy, L. V. & Antonia, R. A. 1987 Temperature dissipation measurements in a turbulent boundary layer. J. Fluid Mech. 176, 265281.Google Scholar
Kuztnetsov, V. R., Praskovsky, A. A. & Sabelnikov, V. A. 1992 Fine-scale turbulence structure of intermittent shear flows. J. Fluid Mech. 243, 595622.Google Scholar
Mestayer, P. & Chambaud, P. 1979 Some limitations to measurements of turbulence micro-structure with hot and cold wires. Boundary-Layer Met. 16, 311329.Google Scholar
Mestayer, P., Gibson, C. H., Coantic, M. & Patel, A. S. 1976 Local anisotropy in heated and cooled turbulent boundary layers. Phys. Fluids 19, 12791287.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press.
Namazian, M., Scheffer, R. W. & Kelly, J. 1988 Scalar dissipation measurements in the developing region of a jet. Combust. Flame 74, 147160.Google Scholar
O'Brien, E. E. & Sahay, A. 1992 Asymptotic behaviour of the amplitude mapping closure. Phys. Fluids A 4, 17731775.Google Scholar
Panchapakesan, A. & Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium. J. Fluid Mech. 246, 225247.Google Scholar
Piomelli, U., Balint, J. L. & Wallace, J. M. 1989 On the validity of Taylor's hypothesis for wall-bounded flows. Phys. Fluids A 1, 609611.Google Scholar
Pope, S. B. & Chen, Y. L. 1990 The velocity-dissipation probability density function model for turbulent flows. Phys. Fluids A 2, 14371449.Google Scholar
Ruffin, E., Schiestel, R., Anselmet, F., Amielh, M. & Fulachier, L. 1994 Investigation of characteristic scales in variable density turbulent jets using a second-order model. Phys. Fluids 6, 27852799.Google Scholar
Sahay, A. & O'Brien, E. E. 1993 Uniform mean scalar gradient in grid turbulence: conditioned dissipation and production. Phys. Fluids A 5, 10761078.Google Scholar
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165182.Google Scholar
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Temperature dissipation fluctuations in a turbulent boundary layer. Phys. Fluids 20, 12381249.Google Scholar
Vaienti, S., Ould-Rouis, M., Anselmet, F. & Le Gal, P. 1994 Statistics of temperature increments in fully developed turbulence. Part I. Theory. Physica D 73, 99112.Google Scholar
Verollet, E. 1972 Etude d’une couche limite turbulente avec aspiration et chauffage à la paroi. Thèse de Docteur ès Sciences Physiques, Université de Provence, Marseille.
Vranos, A. 1992 A generalised conditional scalar dissipation-mixture fraction joint pdf for flamelet modelling of non-premixed flames. Combust. Sci. Tech. 84, 323334.Google Scholar
Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 88, 659684.Google Scholar
Wyngaard, J. C. 1971 Spatial resolution of a resistance wire temperature sensor. Phys. Fluids 14, 20522054.Google Scholar