Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T17:51:30.946Z Has data issue: false hasContentIssue false

Large eddy simulation of propeller wake instabilities

Published online by Cambridge University Press:  06 February 2017

Praveen Kumar
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
Krishnan Mahesh*
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
*
Email address for correspondence: kmahesh@umn.edu

Abstract

The wake of a five-bladed marine propeller at design operating condition is studied using large eddy simulation (LES). The mean loads and phase-averaged flow field show good agreement with experiments. Phase-averaged and azimuthal-averaged flow fields are analysed in detail to examine the mechanisms of wake instability. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual-induction mechanism of instability where, instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. It is argued that although the mutual-inductance mode is the dominant mode of instability in propellers, the actual mechanism depends on the propeller geometry and the operating conditions. The axial evolution of the propeller wake from near to far field is discussed. Once the propeller wake becomes unstable, the coherent vortical structures break up and evolve into the far wake, composed of a fluid mass swirling around an oscillating hub vortex. The hub vortex remains coherent over the length of the computational domain.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baek, D. G., Yoon, H. S., Jung, J. H., Kim, K. S. & Paik, B. G. 2015 Effects of the advance ratio on the evolution of a propeller wake. Comput. Fluids 118, 3243.Google Scholar
Balaras, E., Schroeder, S. & Posa, A. 2015 Large-eddy simulations of submarine propellers. J. Ship Res. 59 (4), 227237.CrossRefGoogle Scholar
Bridges, D. H.2004 A detailed study of the flowfield of a submarine propeller during a crashback maneuver. Tech. Rep. MSSU-ASE-04-1. Department of Aerospace Engineering, Mississippi State University.Google Scholar
Chang, P., Ebert, M., Young, Y. L., Liu, Z., Mahesh, K., Jang, H. & Shearer, M. 2008 Propeller forces and structural responses to crashback. In Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea.Google Scholar
Chase, N. & Carrica, P. M. 2013 Submarine propeller computations and application to self-propulsion of DARPA Suboff. Ocean Engng 60, 6880.CrossRefGoogle Scholar
Di Felice, F., Di Florio, D., Felli, M. & Romano, G. P. 2004 Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry. J. Ship Res. 48 (2), 168190.Google Scholar
Di Felice, F., Felli, M., Liefvendahl, M. & Svennberg, U. 2009 Numerical and experimental analysis of the wake behavior of a generic submarine propeller. In First International Symposium on Marine Propulsors, Trondheim, Norway.Google Scholar
Di Mascio, A., Muscari, R. & Dubbioso, G. 2014 On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263307.Google Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.Google Scholar
Felli, M., Di Felice, F., Guj, G. & Camussi, R. 2006 Analysis of the propeller wake evolution by pressure and velocity phase measurements. Exp. Fluids 41 (3), 441451.Google Scholar
Felli, M., Guj, G. & Camussi, R. 2008 Effect of the number of blades on propeller wake evolution. Exp. Fluids 44 (3), 409418.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid–scale eddy viscosity model. Phys. Fluids A 3 (7), 1760.Google Scholar
Green, R. B., Gillies, E. A. & Brown, R. E. 2005 The flow field around a rotor in axial descent. J. Fluid Mech. 534, 237261.Google Scholar
Gupta, B. P. & Loewy, R. G. 1974 Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices. AIAA J. 12 (10), 13811387.Google Scholar
Hecker, R. & Remmers, K.1971 Four quadrant open-water performance of propellers 3710, 4024, 4086, 4381, 4382, 4383, 4384 and 4426. Tech. Rep. PNSRADC 417-H01. David Taylor Naval Ship Research and Development Center.Google Scholar
Iungo, G. V., Viola, F., Camarri, S., Porté-Agel, F. & Gallaire, F. 2013 Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech. 737, 499526.CrossRefGoogle Scholar
Jang, H. & Mahesh, K. 2008 Large eddy simulation of ducted propulsors in crashback. In Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul, Korea.Google Scholar
Jang, H. & Mahesh, K. 2012 Large eddy simulation of crashback in ducted propulsors with stator blades. In Proceedings of the 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden.Google Scholar
Jang, H. & Mahesh, K. 2013 Large eddy simulation of flow around a reverse rotating propeller. J. Fluid Mech. 729, 151179.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jessup, S., Chesnakas, C., Fry, D., Donnelly, M., Black, S. & Park, J. 2004 Propeller performance at extreme off design conditions. In Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John’s, Canada.Google Scholar
Jessup, S., Fry, D. & Donnelly, M. 2006 Unsteady propeller performance in crashback conditions with and without duct. In Proceedings of the 26th Symposium on Naval Hydrodynamics, Rome, Italy.Google Scholar
Joukowski, N. E. 1912 Vortex theory of screw propeller. Trudy Otdeleniya Fiz. Nauk Obshchestva Lubitelei Estestvoznaniya 16 (1), 131; (in Russian).Google Scholar
Kerwin, J. E. 1986 Marine propellers. Annu. Rev. Fluid Mech. 18 (1), 367403.Google Scholar
Krasny, R. 1986 A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 6593.Google Scholar
Kumar, P. & Mahesh, K. 2015 Analysis of marine propulsor in crashback using large eddy simulation. In Fourth International Symposium on Marine Propulsors, Austin, Texas, USA.Google Scholar
Kumar, P. & Mahesh, K. 2016 Towards large eddy simulation of hull-attached propeller in crashback. In Proceedings of the 31st Symposium on Naval Hydrodynamics, Monterey, USA.Google Scholar
Lee, S. J., Paik, B. G., Yoon, J. H. & Lee, C. M. 2004 Three-component velocity field measurements of propeller wake using a stereoscopic PIV technique. Exp. Fluids 36 (4), 575585.CrossRefGoogle Scholar
Levy, H. & Forsdyke, A. G. 1928 The steady motion and stability of a helical vortex. Proc. R. Soc. Lond. A 120, 670690.Google Scholar
Lignarolo, L. E. M., Ragni, D., Krishnaswami, C., Chen, Q., Ferreira, C. J. S. & Van Bussel, G. J. W. 2014 Experimental analysis of the wake of a horizontal-axis wind-turbine model. Renew. Energy 70, 3146.CrossRefGoogle Scholar
Lignarolo, L. E. M., Ragni, D., Scarano, F., Ferreira, C. J. S. & van Bussel, G. J. W. 2015 Tip-vortex instability and turbulent mixing in wind-turbine wakes. J. Fluid Mech. 781, 467493.CrossRefGoogle Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid–scale closure model. Phys. Fluids A 4 (3), 633635.CrossRefGoogle Scholar
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large–eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215.Google Scholar
Mahesh, K., Kumar, P., Gnanaskandan, A. & Nitzkorski, Z. 2015 LES applied to ship research. J. Ship Res. 59 (4), 238245.Google Scholar
Moore, D. W. 1974 A numerical study of the roll-up of a finite vortex sheet. J. Fluid Mech. 63 (02), 225235.CrossRefGoogle Scholar
Nemes, A., Lo Jacono, D., Blackburn, H. M. & Sheridan, J. 2015 Mutual inductance of two helical vortices. J. Fluid Mech. 774, 298310.Google Scholar
Ohanian, C. V., McCauley, G. J. & Savas, Ö. 2012 A visual study of vortex instabilities in the wake of a rotor in hover. J. Amer. Helicopter Soc. 57 (4), 18.CrossRefGoogle Scholar
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.Google Scholar
Okulov, V. L. & Sørensen, J. N. 2007 Stability of helical tip vortices in a rotor far wake. J. Fluid Mech. 576, 125.Google Scholar
Park, N. & Mahesh, K. 2009 Reduction of the Germano-identity error in the dynamic Smagorinsky model. Phys. Fluids 21 (6), 065106.CrossRefGoogle Scholar
Quaranta, H. U., Bolnot, H. & Leweke, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687716.CrossRefGoogle Scholar
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S., Sørensen, J. N. & Henningson, D. S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.Google Scholar
Segalini, A. & Inghels, P. 2014 Confinement effects in wind-turbine and propeller measurements. J. Fluid Mech. 756, 110129.Google Scholar
Shelley, M. J. 1992 A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method. J. Fluid Mech. 244, 493526.Google Scholar
Sherry, M., Nemes, A., Lo Jacono, D., Blackburn, H. M. & Sheridan, J. 2013a The interaction of helical tip and root vortices in a wind turbine wake. Phys. Fluids 25 (11), 117102.Google Scholar
Sherry, M., Sheridan, J. & Lo Jacono, D. 2013b Characterisation of a horizontal axis wind turbine’s tip and root vortices. Exp. Fluids 54 (3), 119.Google Scholar
Stack, J., Caradonna, F. X. & Savas, Ö. 2005 Flow visualizations and extended thrust time histories of rotor vortex wakes in descent. J. Amer. Helicopter Soc. 50 (3), 279288.CrossRefGoogle Scholar
Stella, A., Guj, G. & Di Felice, F. 2000 Propeller wake flowfield analysis by means of LDV phase sampling techniques. Exp. Fluids 28 (1), 110.Google Scholar
Stella, A., Guj, G., Di Felice, F. & Elefante, M. 1998 Propeller wake evolution analysis by LDV. In Proceedings of 22nd Symposium on Naval Hydrodynamics, Washington DC, pp. 171188.Google Scholar
Verma, A., Jang, H. & Mahesh, K. 2012 The effect of an upstream hull on a propeller in reverse rotation. J. Fluid Mech. 704, 6188.CrossRefGoogle Scholar
Verma, A. & Mahesh, K. 2012 A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows. Phys. Fluids 24 (8), 085101.Google Scholar
Vermeer, L. J., Sørensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39 (6), 467510.Google Scholar
Vyšohlid, M. & Mahesh, K. 2006 Large eddy simulation of crashback in marine propellers. In Proceedings of the 26th Symposium on Naval Hydrodynamics, Rome, Italy.Google Scholar
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (04), 641663.CrossRefGoogle Scholar
Wilson, R. E. 1994 Aerodynamic behavior of wind turbines. In Wind Turbine Technology, Fundamental Concepts of Wind Turbine Engineering (ed. Spera, D.), pp. 251282. ASME Press.Google Scholar