Published online by Cambridge University Press: 26 April 2006
The flow structure and entrainment mechanisms in the far field of a round vertical buoyant jet have been studied experimentally by use of an optical technique based on laser-induced fluorescence (LIF). A large number of essentially instantaneous tracer concentration profiles were recorded for each experimental run by combining LIF with linear photodiode array imaging and high-speed digital data acquisition. Analysis of the resulting high-resolution flow images indicates that the far-field region is dominated by the periodic passage of structures spanning the entire radial flow extent. Ambient fluid is entrained by vortical motions and is transported to regions deep into the flow interior. Correlation analysis discloses that the passage frequency of the structures scales with the local mean velocity and flow width. Conditional averaging of the data indicates that the downstream frontal region of the structure is well mixed and at higher concentration level than the back and side regions where ambient fluid is intermittently present. This results in an axial concentration gradient within the structure, analogous to the ramp-like pattern previously observed in heated air jets. In comparison to the momentum-driven flow the ambient fluid presence in the flow interior is greatly increased when body forces are the driving mechanism. This appears to result from the influence of buoyancy forces in the production of turbulent vortices at the integral scale. An important feature of both the momentum-driven and buoyancy-driven flows investigated is the strongly intermittent character of the concentration field. This raises the issue of the appropriateness of gradient-diffusion theories for the description of such flows.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.