Published online by Cambridge University Press: 29 March 2006
A lifting-surface theory is presented for a cascade in subsonic shear flow by applying Fourier integral methods to the expressions of the perturbed flow field. The pressure distribution on the blade surface is determined by means of the socalled singularity method. Some numerical examples are presented and discussed in comparison with the results according to the lifting-line theory.
A significant difference is found in the effect of compressibility between a shear flow and a uniform flow. In shear flows with the maximum Mach number close to one, no such great local lift force is found near the sonic station as would be predicted by the linearized subsonic uniform flow theory. The correlation between the local lift and the local effective angle of attack at high Mach number span-stations shows a great deviation from that according to the uniform flow theory.