Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T10:02:35.283Z Has data issue: false hasContentIssue false

Liquid interfaces in viscous straining flows: numerical studies of the selective withdrawal transition

Published online by Cambridge University Press:  01 October 2008

MARKO KLEINE BERKENBUSCH
Affiliation:
Department of Physics & James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago IL 60637, USAmkb@uchicago.edu; wzhang@uchicago.edu
ITAI COHEN
Affiliation:
Physics Department, Cornell University, Ithaca, NY 14853, USAic64@cornell.edu
WENDY W. ZHANG
Affiliation:
Department of Physics & James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago IL 60637, USAmkb@uchicago.edu; wzhang@uchicago.edu

Abstract

This paper presents a numerical analysis of the transition from selective withdrawal to viscous entrainment. In our model problem, an interface between two immiscible layers of equal viscosity is deformed by an axisymmetric withdrawal flow, which is driven by a point sink located some distance above the interface in the upper layer. We find that steady-state hump solutions, corresponding to selective withdrawal of liquid from the upper layer, cease to exist above a threshold withdrawal flux, and that this transition corresponds to a saddle-node bifurcation for the hump solutions. Numerical results on the shape evolution of the steady-state interface are compared against previous experimental measurements. We find good agreement where the data overlap. However, the larger dynamic range of the numerical results allows us to show that the large increase in the curvature of the hump tip near transition is not consistent with an approach towards a power-law cusp shape, an interpretation previously suggested from inspection of the experimental measurements alone. Instead, the large increase in the curvature at the hump tip reflects a robust trend in the steady-state interface evolution. For large deflections, the hump height is proportional to the logarithm of the curvature at the hump tip; thus small changes in hump height correspond to large changes in the value of the hump curvature.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acrivos, A. & Lo, T. S. 1978 Deformation and breakup of a single slender drop in an extensional flow. J. Fluid Mech. 86, 641672.CrossRefGoogle Scholar
Anna, S. L., Bontourx, N. & Stone, H. A. 2003 Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364366.CrossRefGoogle Scholar
Barenblatt, G. I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Blanchette, F. & Zhang, W. W. 2006 Transition flow rate in viscous withdrawal. APS-DFD Meeting, OJ006B.Google Scholar
Blanchette, F. & Zhang, W. W. 2007 Selective withdrawal in liquids of uneven viscosities. Preprint.Google Scholar
Blawzdziewicz, J., Cristini, V. & Loewenberg, M. 2002 Critical behavior of drops in linear flows. I. Phenomenological theory for drop dynamics near critical stationary states. Phys. Fluids 14 (8), 27092718.CrossRefGoogle Scholar
Buckmaster, J. D. 1973 The bursting of pointed drops in slow viscous flow. J. Appl. Mech. E 40, 1824.CrossRefGoogle Scholar
Case, S. & Nagel, S. R. 2005 Selective withdrawal with an inverted viscosity ratio. APS March Meeting, H37.008.Google Scholar
Case, S. C. & Nagel, S. R. 2007 Spout states in the selective withdrawal of immiscible fluids through a nozzle suspended above a two-fluid interface. Phys. Rev. Lett. 98, 114501.CrossRefGoogle ScholarPubMed
Chaieb, S. 2004 Free surface deformation and cusp formation during the drainage of a very viscous fluid. ArXiv:physics/0404088.Google Scholar
Cohen, I. 2004 Scaling and transition structure dependence on the fluid viscosity ratio in the selective withdrawal transition. Phys. Rev. E 70, 026302.Google ScholarPubMed
Cohen, I. & Nagel, S. 2002 Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys. Rev. Lett. 88 (7), 074501.CrossRefGoogle ScholarPubMed
Cohen, I., Brenner, M. P., Eggers, J. & Nagel, S. R. 1999 Two fluid snap-off problem: experiments and theory. Phys. Rev. Lett. 83 (6), 11471150.CrossRefGoogle Scholar
Cohen, I., Li, H., Hougland, J. L., Mrksich, M. & Nagel, S. R. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.CrossRefGoogle ScholarPubMed
Courrech du Pont, S. & Eggers, J. 2006 Tip singularity on a liquid–gas interface. Phys. Rev. Lett. 96, 034501.CrossRefGoogle Scholar
Davaille, A. 1999 Simultaneous generation of hotspots and superswells by convection in a heterogenous planetary mantle. Nature 402, 756760.CrossRefGoogle Scholar
Dempsey, J. P. 1981 The wedge subjected to tractions: a paradox resolved. J. Elasticity 11, 110.CrossRefGoogle Scholar
Doshi, P., Cohen, I., Zhang, W. W., Siegel, M., Howell, P., Basaran, O. A. & Nagel, S. R. 2003 Persistence of memory in drop breakup: the breakdown of universality. Science 302, 11851188.CrossRefGoogle ScholarPubMed
Dundurs, J. & Markenscoff, X. 1989 The Sternberg–Koifer conclusion and other anomalies of the concentrated couple. Trans. ASME E: J. Appl. Mech. 56, 240245.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.CrossRefGoogle Scholar
Eggers, J. 2001 Air entrainment through free-surface cusps. Phys. Rev. Lett. 86 (19), 42904293.CrossRefGoogle ScholarPubMed
Eggers, J., Lister, J. R. & Stone, H. A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.CrossRefGoogle Scholar
Forbes, L. K., Hocking, G. C. & Wotherspoon, S. 2004 Salt-water up-coning during extraction of fresh water from a tropical island. J. Engng Maths 48, 6991.CrossRefGoogle Scholar
Grace, P. 1982 Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Engng Commun. 14, 225239.CrossRefGoogle Scholar
Hocking, G. C. & Forbes, L. K. 2001 Super-critical withdrawal from a two-layer fluid through a line sink if the lower layer is of finite depth. J. Fluid Mech. 428, 333348.CrossRefGoogle Scholar
Imberger, J. & Hamblin, P. F. 1982 Dynamics of lakes, reservoirs and cooling ponds. Annu. Rev. Fluid Mech. 14, 153187.CrossRefGoogle Scholar
Ivey, G. N. & Blake, S. 1985 Axisymmetrical withdrawal and inflow in a density-stratified container. J. Fluid Mech. 161, 115137.CrossRefGoogle Scholar
Jellinek, A. M. & Manga, M. 2002 The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760763.CrossRefGoogle ScholarPubMed
Jeong, J.-T. & Moffatt, H. K. 1992 Free-surface cusps associated with flow at low Reynolds number. J. Fluid Mech. 241, 122.CrossRefGoogle Scholar
Joseph, D. D., Nelson, J., Renardy, M. & Renardy, Y. 1991 Two-dimensional cusped interfaces. J. Fluid. Mech. 223, 383409.CrossRefGoogle Scholar
Ladyzhenskaya, O. A. 1963 The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach.Google Scholar
Lee, S. H. & Leal, L. G. 1982 The motion of a sphere in the presence of a deformable interface. II. A numerical study of the translation of a sphere normal to an interface. J. Colloid Interface Sci. 87, 81106.CrossRefGoogle Scholar
Limat, L. & Stone, H. 2004 Three-dimensional lubrication model of a contact line corner singularity. Europhys. Lett. 65, 365371.CrossRefGoogle Scholar
Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. 2004 Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503.CrossRefGoogle ScholarPubMed
Lister, J. R. 1989 Selective withdrawal from a viscous two-layer system. J. Fluid Mech. 198, 231254.CrossRefGoogle Scholar
Lorenceau, E., Restagno, F. & Quéré, D. 2003 Fracture of a viscous liquid. Phys. Rev. Lett. 90 (184501).CrossRefGoogle ScholarPubMed
Lorenceau, E., Quéré, D. & Eggers, J. 2004 Air entrainment by a viscous jet plunging into a bath. Phys. Rev. Lett. 93, 254501.CrossRefGoogle ScholarPubMed
Lorenceau, E., Utada, A. S., Link, D. R., Cristobal, G., Joanicot, M. & Weitz, D. A. 2005 Generation of polymerosomes from double-emulsions. Langmuir 21, 91839186.CrossRefGoogle ScholarPubMed
Lorentz, H. A. 1907 Ein allgemeiner satz, die bewegung einer reibenden flüssigkeit betreffend, nebst einigen anwendungen. Abh. üb. theor. Physik 1, 23.Google Scholar
Lubin, B. T. & Springer, G. S. 1967 The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech. 29, 385389.CrossRefGoogle Scholar
Miloh, T. & Tyvand, P. A. 1993 Nonlinear transient free-surface flow and dip formation due to a point sink. Phys. Fluids A 5, 13681375.CrossRefGoogle Scholar
Moffatt, H. K. & Duffy, B. R. 1980 Local similarity solutions and their limitations. J. Fluid Mech. 96, 299313.CrossRefGoogle Scholar
Navot, Y. 1999 Critical behavior of drop breakup in axisymmetric viscous flow. Phys. Fluids 11, 990996.CrossRefGoogle Scholar
Oddershede, L. & Nagel, S. R. 2000 Singularity during the onset of an electrohydrodynamic spout. Phys. Rev. Lett. 85.CrossRefGoogle ScholarPubMed
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.CrossRefGoogle Scholar
Renardy, M. & Renardy, Y. 1985 Perturbation analysis of steady and oscillatory onset in a Bénard problem with two similar liquids. Phys. Fluids 28, 26992708.CrossRefGoogle Scholar
Renardy, Y. & Joseph, D. D. 1985 Oscillatory instability in a Bénard problem of two fluids. Phys. Fluids 28, 788793.CrossRefGoogle Scholar
Sautreaux, C. 1901 Mouvement d'un liquide parfait soumis à lapesaneur. Détermination des lignes de courant. J. Math. Pures Appl. 7, 125159.Google Scholar
Simpkins, P. & Kuck, V. J. 2000 Air entrapment in coatings by way of a tip-streaming meniscus. Nature 403, 641643.CrossRefGoogle ScholarPubMed
Sternberg, E. & Koiter, W. T. 1958 The wedge under a concentrated couple: a paradox in the two-dimensional theory of elasticity. Trans. ASME E: J. Appl. Mech. 25, 575–81.CrossRefGoogle Scholar
Stokes, T. E., Hocking, G. C. & Forbes, L. K. 2005 Unsteady flow induced by a withdrawal point beneath a free surface. Anziam J. 47, 185202.CrossRefGoogle Scholar
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 65, 65102.CrossRefGoogle Scholar
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. A 146, 501523.Google Scholar
Taylor, G. I. 1964 Conical free surfaces and fluid interfaces. Proc. 11th Intl Cong. Appl. Mech. pp. 790–796.CrossRefGoogle Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005 The coalescence speed of a pendant and a sessile drop. J. Fluid Mech. 527, 85114.CrossRefGoogle Scholar
Ting, T. C. T. 1984 The wedge subjected to tractions: a paradox re-examined. J. Elasticity 14, 235–47.CrossRefGoogle Scholar
Tuck, E. O. & Vanden-Broeck, J.-M. 1984 A cusp-like free-surface flow due to a submerged source or sink. J. Austral. Math. Soc. B 25, 443450.CrossRefGoogle Scholar
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. & Weitz, D. A. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308, 537541.CrossRefGoogle ScholarPubMed
Vanden-Broeck, J.-M. & Keller, J. B. 1987 Free surface flow due to a sink. J. Fluid Mech. 175, 109117.CrossRefGoogle Scholar
Wyman, J., Dillmore, S., Murphy, W., Garfinkel, M., Mrksich, M. & Nagel, S. R. 2004 Microencapsulation of Islets of Langerhans via selective withdrawal to achieve immunoisolation. APS March Meeting, W9.008.Google Scholar
Zhang, W. W. 2004 Viscous entrainment from a nozzle: singular liquid spouts. Phys. Rev. Lett. p. 184502.CrossRefGoogle Scholar
Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for capillary pinch-off in fluids of differing viscosity. Phys. Rev. Lett. 83, 11511154.CrossRefGoogle Scholar