Published online by Cambridge University Press: 12 April 2012
Recent analytical investigations have shown that the vertical evolution of turbulent plumes variables can be derived straightforwardly from the knowledge of a single function (called the plume function) which is the solution of a nonlinear differential equation. This article presents matched asymptotic solutions of this equation in the cases corresponding to highly lazy or highly forced plumes. First, it is shown that, far from the source, the asymptotic expression of the plume function can be derived by means of a perturbation method based on a Padé-like approximation. The resulting outer solution is invariant under translation (with respect to the vertical coordinate) so that we are led to the classical problem concerning the location of the plume (asymptotic) virtual origin. In order to determine this virtual origin location as a function of the conditions at the source, the far-field asymptotic solution is matched to an inner expansion of the solution which is valid near the source. Comparisons between these asymptotic solutions and numerical results are finally made in order to test their validity.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.