Published online by Cambridge University Press: 15 April 2002
A double Hopf bifurcation has been found of the flow in a cylinder driven by the rotation of an endwall. A detailed analysis of the multiple solutions in a large region of parameter space, computed with an efficient and accurate three-dimensional Navier-Stokes solver, is presented. At the double Hopf point, an axisymmetric limit cycle and a rotating wave bifurcate simultaneously. The corresponding mode interaction generates an unstable two-torus modulated rotating wave solution and gives a wedge-shaped region in parameter space where the two periodic solutions are both stable. By exploring in detail the three-dimensional structure of the flow, we have identified the two mechanisms that compete in the neighbourhood of the double Hopf point. Both are associated with the jet that is formed when the Ekman layer on the rotating endwall is turned by the stationary sidewall.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.