Published online by Cambridge University Press: 19 April 2011
Numerical modelling of solute dispersion in natural heterogeneous porous media is facing several challenges. Amongst these we highlight the challenge of accounting for high-frequency variability that is filtered out by homogenization at the subgrid scale and the uncertainty in the dispersive flux for transport under non-ergodic conditions. These two effects when combined lead to inaccurate representation of the dispersive fluxes. We propose to compensate for this deficiency by defining a block-scale dispersion tensor and modelling it as a random space function ℳij. The derived dispersion tensor is a function of several length scales and time. Grid blocks will be assigned dispersion coefficients generated from the ℳij distribution. We will show the dependence of ℳij on the spatial variability of the conductivity field, on the contaminant source size, on the travel time and on the grid-block scale. For an ergodic source, a statistically uniform conductivity field and very large grid blocks, ℳij is equal to the macrodispersion coefficients proposed by Dagan (J. Fluid Mech., vol. 145, 1984, p. 151) with zero variance. For an ergodic source and non-uniform conductivity field with a finite-size grid block, ℳij approaches the model proposed by Rubin et al. (J. Fluid Mech., vol. 395, 1999, p. 161). In both cases, ℳij is defined by its mean value with zero variance. ℳij is subject to uncertainty when the source is non-ergodic and when the grid block is defined by a finite scale. When the grid-block scale approaches zero, which means that the spatial variability is captured completely on the numerical grid, ℳij approaches zero with zero variance. In addition, we provide a complete statistical characterization of ℳij by invoking the concept of minimum relative entropy, thus providing upper bounds on the uncertainty associated with ℳij.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.