Published online by Cambridge University Press: 23 February 2015
A three-dimensional two-layer, fully dispersive and strongly nonlinear interfacial wave model, including the interaction with a time-varying bottom topography, is developed. The method is based on a set of integral equations. The source and dipole terms are developed in series expansions in the vertical excursions of the interface and bottom topography, obtaining explicit inversion by Fourier transform. Calculations of strongly nonlinear interfacial waves with excursions comparable to the thinner layer depth show that the quadratic approximation of the method contains the essential dynamics, while the additional cubic terms always are small. Computations confirm the onset of wave train formation driven by topography, observed in experiments (Maxworthy, J. Geophys. Res., vol. 84(C1), 1979, pp. 338–346), depending on the Froude number and the topography height. Simulations of tidally driven three-dimensional internal wave formation show the formation of two wave trains per half tidal cycle for strong forcing and one wave train for weak forcing. Waves of both backward and forward curvature are calculated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.