Published online by Cambridge University Press: 08 February 2013
We analyse theoretically the interaction between water waves and a thin layer of fluid mud on a sloping seabed. Under the assumption of long waves in shallow water, weakly nonlinear and dispersive effects in water are considered. The fluid mud is modelled as a thin layer of viscoelastic continuum. Using the constitutive coefficients of mud samples from two field sites, we examine the interaction of nonlinear waves and the mud motion. The effects of attenuation on harmonic evolution of surface waves are compared for two types of mud with distinct rheological properties. In general mud dissipation is found to damp out surface waves before they reach the shore, as is known in past observations. Similar to the Eulerian current in an oscillatory boundary layer in a Newtonian fluid, a mean displacement in mud is predicted which may lead to local rise of the sea bottom.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.