Published online by Cambridge University Press: 29 March 2006
The flow induced by impulsively starting the inner cylinder in a Couette flow apparatus is investigated by using a nonlinear analysis. Explicit finite-difference approximations are used to solve the Navier–Stokes equations for axisymmetric flows. Random small perturbations are distributed initially and periodic boundary conditions are applied in the axial direction over a length which, in general, is chosen to be the critical wavelength observed experimentally. Simultaneous occurrence of Taylor vortices is obtained at supercritical Reynolds numbers. The development of streamlines, perturbation velocity components and the kinetic energy of the perturbations is examined in detail. Many salient features of the physical flow are observed in the numerical experiments.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.