Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T12:27:08.408Z Has data issue: false hasContentIssue false

Oblique waves in steady supersonic flows of Bethe–Zel’dovich–Thompson fluids

Published online by Cambridge University Press:  19 September 2018

Davide Vimercati
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano Via La Masa 34, 20156 Milano, Italy
Alfred Kluwick
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
Alberto Guardone*
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano Via La Masa 34, 20156 Milano, Italy
*
Email address for correspondence: alberto.guardone@polimi.it

Abstract

Steady self-similar solutions to the supersonic flow of Bethe–Zel’dovich–Thompson fluids past compressive and rarefactive ramps are derived. Inviscid, non-heat-conducting, non-reacting and single-phase vapour flow is assumed. For convex isentropes and shock adiabats in the pressure–specific volume plane (classical gas dynamic regime), the well-known oblique shock and centred Prandtl–Meyer fan occur at a compressive and rarefactive ramp, respectively. For non-convex isentropes and shock adiabats (non-classical gas dynamic regime), four additional wave configurations may possibly occur; these are composite waves in which a Prandtl–Meyer fan is adjacent up to two oblique shock waves. The steady two-dimensional counterparts of the wave curves defined for the one-dimensional Riemann problem are constructed. In the present context, such curves consist of all the possible states connected to a given initial state (namely, the uniform state upstream of the ramp/wedge) by means of a steady self-similar solution. In addition to the classical case, as many as six non-classical wave-curve configurations are singled out. Moreover, the necessary conditions leading to each type of wave curves are analysed and a map of the upstream states leading to each configuration is determined.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alferez, N. & Touber, E. 2017 One-dimensional refraction properties of compression shocks in non-ideal gases. J. Fluid Mech. 814, 185221.Google Scholar
Bates, J. W. & Montgomery, D. C. 1999 Some numerical studies of exotic shock wave behavior. Phys. Fluids 11 (2), 462475.Google Scholar
Bethe, H. A.1942 The theory of shock waves for an arbitrary equation of state. Tech. Paper 545. Office Sci. Res. & Dev.Google Scholar
Borisov, A. A., Borisov, A. A., Kutateladze, S. S. & Nakoryakov, V. E. 1983 Rarefaction shock wave near the critical liquid-vapor point. J. Fluid Mech. 126, 5973.Google Scholar
Colonna, P., Guardone, A. & Nannan, N. R. 2007 Siloxanes: a new class of candidate Bethe–Zel’dovich–Thompson fluids. Phys. Fluids 19 (10), 086102,1–12.Google Scholar
Colonna, P., Guardone, A., Nannan, N. R. & Zamfirescu, C. 2008 Design of the dense gas flexible asymmetric shock tube. J. Fluid Engng 130 (3), 034501,1–6.Google Scholar
Cramer, M. S. 1989a Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1 (11), 18941897.Google Scholar
Cramer, M. S. 1989b Shock splitting in single-phase gases. J. Fluid Mech. 199, 281296.Google Scholar
Cramer, M. S. & Crickenberger, A. B. 1992 Prandtl–Meyer function for dense gases. AIAA J. 30 (2), 561564.Google Scholar
Cramer, M. S. & Fry, N. R. 1993 Nozzle flows of dense gases. Phys. Fluids A 5 (5), 12461259.Google Scholar
Cramer, M. S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.Google Scholar
Cramer, M. S., Kluwick, A., Watson, L. T. & Pelz, W. 1986 Dissipative waves in fluids having both positive and negative nonlinearity. J. Fluid Mech. 169, 323336.Google Scholar
Cramer, M. S. & Sen, R. 1986 Shock formation in fluids having embedded regions of negative nonlinearity. Phys. Fluids 29, 21812191.Google Scholar
Cramer, M. S. & Sen, R. 1987 Exact solutions for sonic shocks in van der Waals gases. Phys. Fluids 30, 377385.Google Scholar
Cramer, M. S. & Tarkenton, G. M. 1992 Transonic flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 240, 197228.Google Scholar
Dafermos, C. M. 2010 Hyperbolic Conservation Laws in Continuum Physics, vol. 325. Springer.Google Scholar
D’yakov, S. P. 1954 On the stability of shock waves. Zh. Eksp. Teor. Fiz. 27 (3), 288295.Google Scholar
Erpenbeck, J. J. 1962 Stability of step shocks. Phys. Fluids 5 (10), 11811187.Google Scholar
Fergason, S. H., Guardone, A. & Argrow, B. M. 2003 Construction and validation of a dense gas shock tube. J. Thermophys. Heat Transfer 17 (3), 326333.Google Scholar
Fergason, S. H., Ho, T. L., Argrow, B. M. & Emanuel, G. 2001 Theory for producing a single-phase rarefaction shock wave in a shock tube. J. Fluid Mech. 445, 3754.Google Scholar
Fowles, G. R. 1981 Stimulated and spontaneous emission of acoustic waves from shock fronts. Phys. Fluids 24 (2), 220227.Google Scholar
Godlewski, E. & Raviart, P. A. 2013 Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118. Springer.Google Scholar
Guardone, A. & Argrow, B. M. 2005 Nonclassical gasdynamic region of selected fluorocarbons. Phys. Fluids 17 (11), 116101,1–17.Google Scholar
Guardone, A., Vigevano, L. & Argrow, B. M. 2004 Assessment of thermodynamic models for dense gas dynamics. Phys. Fluids 16 (11), 38783887.Google Scholar
Guardone, A. & Vimercati, D. 2016 Exact solutions to non-classical steady nozzle flows of Bethe–Zel’dovich–Thompson fluids. J. Fluid Mech. 800, 278306.Google Scholar
Ivanov, A. G. & Novikov, S. A. 1961 Rarefaction shock waves in iron and steel. Zh. Eksp. Teor. Fiz. 40 (6), 18801882.Google Scholar
Kluwick, A. 1993 Transonic nozzle flow of dense gases. J. Fluid Mech. 247, 661688.Google Scholar
Kluwick, A. 2001 Handbook of Shock Waves, Rarefaction Shocks, chap. 3.4, pp. 339411. Academic Press.Google Scholar
Kluwick, A. & Cox, E. A. 2018 Steady small-disturbance transonic dense gas flow past two-dimensional compression/expansion ramps. J. Fluid Mech. 848, 756787.Google Scholar
Thol, M., Javed, M. A., Baumhoegger, E., Span, R. & Vrabec, J. 2018 Thermodynamic properties of dodecamethylpentasiloxane, tetradecamethylhexasiloxane and decamethylcyclopentasiloxane. Fluid Phase Equilib. (submitted).Google Scholar
Kontorovich, V. M. 1958 Concerning the stability of shock waves. J. Expl Theor. Phys. 33, 15251526.Google Scholar
Kutateladze, S. S., Nakoryakov, V. E. & Borisov, A. A. 1987 Rarefaction waves in liquid and gas-liquid media. Annu. Rev. Fluid Mech. 19, 577600.Google Scholar
Lambrakis, K. C. & Thompson, P. A. 1972 Existence of real fluids with a negative fundamental derivative 𝛤. Phys. Fluids 15 (5), 933935.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon Press.Google Scholar
Lemmon, E. W., Huber, M. L. & McLinden, M. O.2013 NIST reference database 23: reference fluid thermodynamic and transport properties–REFPROP, version 91. Standard Reference Data Program.Google Scholar
Mathijssen, T., Gallo, M., Casati, E., Nannan, N. R., Zamfirescu, C., Guardone, A. & Colonna, P. 2015 The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids. Exp. Fluids 56 (10), 112.Google Scholar
Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1), 75130.Google Scholar
Nannan, N. R., Guardone, A. & Colonna, P. 2014 Critical point anomalies include expansion shock waves. Phys. Fluids 26 (2).Google Scholar
Nannan, N. R., Sirianni, C., Mathijssen, T., Guardone, A. & Colonna, P. 2016 The admissibility domain of rarefaction shock waves in the near-critical vapour liquid equilibrium region of pure typical fluids. J. Fluid Mech. 795, 241261.Google Scholar
Thompson, P. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.Google Scholar
Thompson, P. A. 1988 Compressilbe Fluid Dynamics. McGraw-Hill.Google Scholar
Thompson, P. A., Carofano, G. C. & Kim, Y. G. 1986 Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J. Fluid Mech. 166, 5792.Google Scholar
Thompson, P. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187208.Google Scholar
Zamfirescu, C., Guardone, A. & Colonna, P. 2008 Admissibility region for rarefaction shock waves in dense gases. J. Fluid Mech. 599, 363381.Google Scholar
Zel’dovich, Y. B. 1946 On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363364.Google Scholar