Published online by Cambridge University Press: 29 March 2006
Several examples of incipient blow-off phenomena described by the compressible similar laminar boundary-layer equations are considered. An asymptotic technique based on the limit of small wall shear, and the use of a novel form of Prandtl's transposition theorem, leads to a complete analytical description of the blow-off behaviour. Of particular interest are the results for overall boundarylayer thickness, which imply that, for a given large Reynolds number, classical theory fails for a sufficiently small wall shear. A derivation of a new distinguished limit of the Navier–Stokes equations, the use of which will lead to uniformly valid solutions to blow-off type problems for Re → ∞, is included. A solution for uniform flow past a flat plate with classical similarity type injection, based on the new limit, is presented. It is shown that interaction of the injectant layers and the external flow results in a favourable pressure gradient, which precludes the classical blow-off catastrophy.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.