Published online by Cambridge University Press: 02 May 2007
Using the Boussinesq approximation, a set of depth-integrated wave equations for long-wave propagation over a mud bed is derived. The wave motions above the mud bed are assumed to be irrotational and the mud bed is modelled as a highly viscous fluid. The pressure and velocity are required to be continuous across the water–mud interface. The resulting governing equations are differential–integral equations in terms of the depth-integrated horizontal velocity and the free-surface displacement. The effects of the mud bed appear in the continuity equation in the form of a time integral of weighted divergence of the depth-averaged velocity. Damping rates for periodic waves and solitary waves are calculated. For the solitary wave case, the velocity profiles in the water column and the mud bed at different phases are discussed. The effects of the viscous boundary layer above the mud–water interface are also examined.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.