Published online by Cambridge University Press: 26 June 2018
This paper focuses on the characteristics of the regime C flow (Tatsuno & Bearman, J. Fluid Mech., vol. 211, 1990, pp. 157–182) around an oscillating circular cylinder in still water. The regime C flow is characterised by the formation of large-scale vortex cores arranged as opposed von Kármán vortex streets, resulting from a regular switching of vortex shedding directions with respect to the axis of oscillation. Both Floquet analysis and direct numerical simulations (DNS) are performed to investigate the two- (2-D) and three-dimensional (3-D) instabilities. The present study reveals that the low-wavenumber 3-D instability can emerge slightly before the 2-D instability in regime C. In total, five spanwise vortex modes were identified: (i) standing-wave pattern, S-mode; (ii) travelling-wave pattern, T-mode; (iii) mixed ST-mode; (iv) X-type vortex pattern, X-mode; and (v) U-type vortex pattern, U-mode. The modal analysis conducted in this study demonstrates that the vortex patterns and the corresponding spatial and temporal modulations of the dynamic loads of the S-, T- and mixed ST-modes are mainly induced by the 3-D instability of a single wavenumber. The characteristics of the X-mode are due to the superposition of the 3-D instabilities of multiple wavenumbers. The U-mode is dominated by a 2-D instability and its interaction with 3-D instabilities. The domain size dependence study demonstrates that the regime C flow is very sensitive to the spanwise length of the computational domain. The subcritical nature of the regime C flow is responsible for the discrepancy in the marginal stability curves obtained by independent Floquet stability analysis, DNS and physical experiments.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.