Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T05:56:57.220Z Has data issue: false hasContentIssue false

On some consequences of the canonical transformation in the Hamiltonian theory of water waves

Published online by Cambridge University Press:  18 September 2009

PETER A. E. M. JANSSEN*
Affiliation:
European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK
*
Email address for correspondence: peter.janssen@ecmwf.int

Abstract

We discuss some consequences of the canonical transformation in the Hamiltonian theory of water waves (Zakharov, J. Appl. Mech. Tech. Phys., vol. 9, 1968, pp. 190–194). Using Krasitskii's canonical transformation we derive general expressions for the second-order wavenumber and frequency spectrum and the skewness and the kurtosis of the sea surface. For deep-water waves, the second-order wavenumber spectrum and the skewness play an important role in understanding the so-called sea-state bias as seen by a radar altimeter. According to the present approach but in contrast with results obtained by Barrick & Weber (J. Phys. Oceanogr., vol. 7, 1977, pp. 11–21), in deep water second-order effects on the wavenumber spectrum are relatively small. However, in shallow water in which waves are more nonlinear, the second-order effects are relatively large and help to explain the formation of the observed second harmonics and infra-gravity waves in the coastal zone. The second-order effects on the directional-frequency spectrum are as a rule more important; in particular it is shown how the Stokes-frequency correction affects the shape of the frequency spectrum, and it is also discussed why in the context of the second-order theory the mean-square slope cannot be estimated from time series. The kurtosis of the wave field is a relevant parameter in the detection of extreme sea states. Here, it is argued that in contrast perhaps to one's intuition, the kurtosis decreases while the waves approach the coast. This is related to the generation of the wave-induced current and the associated change in mean sea level.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banner, M. L. 1990 Equilibrium spectra of wind waves. J. Phys. Oceanogr. 20, 966984.2.0.CO;2>CrossRefGoogle Scholar
Barrick, D. E. & Weber, B. L. 1977 On the nonlinear theory for gravity waves on the ocean's surface. Part 2. Interpretation and applications. J. Phys. Oceanogr. 7, 1121.2.0.CO;2>CrossRefGoogle Scholar
Belcher, S. E. & Vassilicos, J. C. 1997 Breaking waves and the equilibrium range of wind-wave spectra. J. Fluid Mech. 342, 377401.CrossRefGoogle Scholar
Crawford, D. R., Lake, B. M., Saffman, P. G. & Yuen, H. C. 1981 Stability of weakly nonlinear deep-water waves in two and three dimensions. J. Fluid Mech. 105, 177191.CrossRefGoogle Scholar
Creamer, D. B., Heney, F., Schult, R. & Wright, J. 1989 Improved linear representation of ocean surface waves. J. Fluid Mech. 205, 135161.CrossRefGoogle Scholar
Donelan, M. A., Hamilton, J. & Hui, W. H. 1985 Directional spectra of wind generated waves. Phil. Trans. R. Soc. Lond. A 315, 509562.Google Scholar
Elfouhaily, T., Thompson, D., Vandemark, D. & Chapron, B. 1999 Weakly nonlinear theory and sea state bias estimations. J. Geophys. Res. 104, 76417647.CrossRefGoogle Scholar
Forristall, G. Z. 1981 Measurements of saturated range in ocean wave spectra. J. Geophys. Res. 86, 80758089.CrossRefGoogle Scholar
Gramstad, O. & Trulsen, K. 2007 Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech. 582, 463472.CrossRefGoogle Scholar
Hara, T. & Karachintsev, A. V. 2003 Observation of nonlinear effects in ocean surface wave frequency spectra. J. Phys. Oceanogr. 33, 422430.2.0.CO;2>CrossRefGoogle Scholar
Hasselmann, K. 1967 Nonlinear interactions treated by the methods of theoretical physics (with application to the generation of waves by wind). Proc. R. Soc. Lond. A 299, 77100.Google Scholar
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W. & Walden, H. 1973 Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z. A 8 (12), 95.Google Scholar
Herbers, T. H. C., Elgar, S. & Guza, R. T. 1994 Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part 1. Forced Waves. J. Phys. Oceanogr. 24, 917927.2.0.CO;2>CrossRefGoogle Scholar
Jackson, F.C. 1979. The reflection of impulses from a non-linear random sea. J. Geophys. Res. 84, 49394943.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2004 The Interaction of Ocean Waves and Wind. Cambridge University Press.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863883.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. & Komen, G. J. 1982 Modification of the surface elevation probability distribution in ocean swell by nonlinear spectral broadening. J. Geophys. Res. C87, 41554162.CrossRefGoogle Scholar
Janssen, P. A. E. M. & Onorato, M. 2007 The intermediate water depth limit of the Zakharov equation and consequences for wave prediction, J. Phys. Oceanogr. 37, 23892400.CrossRefGoogle Scholar
Kahma, K. K. 1981 A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr. 11, 15031515.2.0.CO;2>CrossRefGoogle Scholar
Kawai, S. K., Okuda & Toba, Y. 1977 Field data support of three-seconds power law and gu *σ−4 spectral form for growing wind waves. J. Oceanogr. Soc. Jpn 33, 137150.CrossRefGoogle Scholar
Komen, G. J. 1980 Nonlinear contributions to the frequency spectrum of wind-generated water waves. J. Phys. Oceanogr. 10, 779790.2.0.CO;2>CrossRefGoogle Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M. 1994 Dynamics and Modelling of Ocean Waves. Cambridge University Press.CrossRefGoogle Scholar
Krasitskii, V. P. 1990. Canonical transformation in a theory of weakly nonlinear waves with a nondecay dispersion law. Sov. Phys. JETP 71, 921927.Google Scholar
Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 120.CrossRefGoogle Scholar
Krasitskii, V. P. & Kalmykov, V. A. 1993 Four-wave reduced equations for surface gravity waves. Izv. Atmos. Ocean. Phys, 29, 222228.Google Scholar
Longuet-Higgins, M. S. 1963 The effect of non-linearities on statistical distributions in the theory of sea waves. J. Fluid Mech. 17, 459480.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep-water. Part 2. Subharmonics. Proc. R. Soc. Lond. A 360, 489505.Google Scholar
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. & Rikiishi, K. 1980 Observations of the power spectrum of waves using a cloverleaf buoy. J. Phys. Oceanogr. 10, 286296.2.0.CO;2>CrossRefGoogle Scholar
Norheim, C. A. & Herbers, T. H. C. 1998 Nonlinear evolution of surface wave spectra on a beach. J. Phys. Oceanogr. 28, 15341551.2.0.CO;2>CrossRefGoogle Scholar
Phillips, O. M. 1958 The equilibrium range in the spectrum of wind-generated water waves. J. Fluid Mech. 4, 426434.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R. & Serio, M. 2008 On deviations from Gaussian statistics for surface gravity waves. In Proceedings of the Hawaiian Winter Workshop, University of Hawaii at Manoa, Manoa, Honolulu, HI.Google Scholar
Srokosz, M. A. 1986 On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry. J. Geophys. Res. 91, 9951006.CrossRefGoogle Scholar
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.Google Scholar
Tick, L. J. 1959 A nonlinear random model of gravity waves. Part 1. J. Math. Mech. 8, 643651.Google Scholar
Toba, Y. 1973 Local balance in the air–sea boundary process, 3. On the spectrum of wind waves. J. Oceanogr. Soc. Jpn 29, 209220.CrossRefGoogle Scholar
Toffoli, A., Onorato, M., Babanin, A. V., Bitner-Gregersen, E., Osborne, A. R. & Monbaliu, J. 2007 Second-order theory and setup in surface gravity waves: a comparison with experimental data. J. Phys. Oceanogr. 37, 27262739.CrossRefGoogle Scholar
US Army Corps of Engineers 2002 Coastal Engineering Manual, no. 1110-2-1100. http://chl.erdc.usace.army.mil/cem.Google Scholar
Waseda, T. 2006 Impact of directionality on the extreme wave occurrence in a discrete random wave system. In Proceedings of the Ninth International Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Wyatt, L. R. 2000 Limits to the inversion of HF radar backscatter for ocean wave measurement. J. Atmos. Ocean. Technol. 17, 16511665.2.0.CO;2>CrossRefGoogle Scholar
Yuen, H. C. & Lake, B. M. 1982 Nonlinear dynamics of deep water gravity waves. Adv. Appl. Mech. 22, 67229.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar
Zakharov, V. E. 1992 Inverse and direct cascade in the wind-driven surface wave turbulence and wave-breaking. In Breaking Waves (ed. Banner, M. L. & Grimshaw, R. H. J.), pp. 6991. Springer.CrossRefGoogle Scholar
Zakharov, V. E. & Filonenko, N. N. 1967 Energy spectrum for stochastic oscillations of the surface of a liquid. Sov. Phys. Dokl. 11, 881.Google Scholar