Published online by Cambridge University Press: 11 May 2010
Tracking the motion of lipid domains on a vesicle is a rheological technique allowing the measurement of surface shear viscosities of vesicular lipid phases. The ratio of surface to bulk viscosity defines a viscous length scale. Hydrodynamic interactions split the motion of the domains into different modes of diffusion. The measurability of surface shear viscosities from any mode of diffusion is limited to viscous length scales between the radius of the domains and the radius of the vesicle. The measurability of the surface shear viscosity results from the sensitivity of the diffusion to surface shear viscosities and from sufficient spatial resolution to resolve the diffusive motion. Switching between the various modes of diffusion is a trade between sensitivity gained and resolution lost by the hydrodynamic interactions leaving the measurability unchanged. Measurability drops with the number of domains making single-domain rheology the best technique to measure surface shear viscosities. Ultimately confinement of the domains to small vesicles renders measurements of surface rheological properties with domain-tracking rheology impossible. Experiments on domains in vesicles of a mixture of dioleoylphosphatidylcholine (DOPC), dipalmytoylphosphatidylcholin (DPPC) and cholesterol (Chol) exhibit diffusion that is entirely controlled by dissipation into the water. The diffusion is suppressed compared to the diffusion of isolated domains in a flat membrane due to confinement to the curved vesicle and by hydrodynamic interactions between the domains. Effects of surface shear viscosity can be neglected.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.