Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T06:56:55.760Z Has data issue: false hasContentIssue false

On the lateral migration of a slightly deformed bubble rising near a vertical plane wall

Published online by Cambridge University Press:  18 August 2010

KAZUYASU SUGIYAMA*
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
FUMIO TAKEMURA
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
*
Email address for correspondence: sugiyama@fel.t.u-tokyo.ac.jp

Abstract

Deformation-induced lateral migration of a bubble slowly rising near a vertical plane wall in a stagnant liquid is numerically and theoretically investigated. In particular, our focus is set on a situation with a short clearance c between the bubble interface and the wall. Motivated by the fact that numerically and experimentally measured migration velocities are considerably higher than the velocity estimated by the available analytical solution using the Faxén mirror image technique for a/(a + c) ≪ 1 (here a is the bubble radius), when the clearance parameter ϵ(=c/a) is comparable to or smaller than unity, the numerical analysis based on the boundary-fitted finite-difference approach solving the Stokes equation is performed to complement the experiment. The migration velocity is found to be more affected by the high-order deformation modes with decreasing ϵ. The numerical simulations are compared with a theoretical migration velocity obtained from a lubrication study of a nearly spherical drop, which describes the role of the squeezing flow within the bubble–wall gap. The numerical and lubrication analyses consistently demonstrate that when ϵ ≤ 1, the lubrication effect makes the migration velocity asymptotically μVB12/(25ϵγ) (here, VB1, μ and γ denote the rising velocity, the dynamic viscosity of liquid and the surface tension, respectively).

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amsden, A. A. & Harlow, F. H. 1970 A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322325.CrossRefGoogle Scholar
Bart, E. 1968 The slow unsteady settling of a fluid sphere toward a flat fluid interface. Chem. Engng Sci. 23, 193210.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Becker, L. E., McKinley, G. H. & Stone, H. A. 1996 Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. J. Non-Newton. Fluid Mech. 63, 201233.CrossRefGoogle Scholar
Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C. & Podgorski, T. 2008 Hydrodynamic lift of vesicles under shear flow in microgravity. Europhys. Lett. 83, 24002.CrossRefGoogle Scholar
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Particle motions in sheared suspensions. Part XVIII. Wall migration (theoretical). Rheol. Acta 4, 6472 (correction in Rheol. Acta 6, 100).CrossRefGoogle Scholar
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92, 131170.CrossRefGoogle Scholar
Cherukat, P. & McLaughlin, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech. 263, 118.CrossRefGoogle Scholar
Correas, J.-M., Bridal, L., Lesavre, A., Méjean, A., Claudon, M. & Hélénon, O. 2001 Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur. Radiol. 11, 13161328.CrossRefGoogle ScholarPubMed
Cox, R. G. & Brenner, H. 1968 The lateral migration of solid particles in Poiseuille flow. Part I. Theory. Chem. Engng Sci. 23, 147173.CrossRefGoogle Scholar
Cox, R. G. & Hsu, S. K. 1977 The lateral migration of solid particles in a laminar flow near a plane. Intl J. Multiph. Flow 3, 201222.CrossRefGoogle Scholar
Dimitrakopoulos, P. 2007 Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm. J. Comput. Phys. 225, 408426.CrossRefGoogle Scholar
Fukagata, K. & Kasagi, N. 2002 Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181, 478498.CrossRefGoogle Scholar
Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M. 2006 Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip 6, 437446.CrossRefGoogle Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall-I motion through a quiescent fluid. Chem. Engng Sci. 22, 637651.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics, 2nd edn. Martinus Nijhoff.Google Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.CrossRefGoogle Scholar
Hibiki, T. & Ishii, M. 2007 Lift force in bubbly flow systems. Chem. Engng Sci. 62, 64576472.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.CrossRefGoogle Scholar
Hodges, S. R., Jensen, O. E. & Rallison, J. M. 2004 Sliding, slipping and rolling: the sedimentation of a viscous drop down a gently inclined plane. J. Fluid Mech. 512, 95131.CrossRefGoogle Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.CrossRefGoogle Scholar
Leal, L. G. 1992 Laminar Flow and Convective Transport Processes. Butterworth-Heinemann.Google Scholar
Magnaudet, J., Takagi, S. & Legendre, D. 2003 Drag, deformation and lateral migration of a buoyant drop moving near a wall. J. Fluid Mech. 476, 115157.CrossRefGoogle Scholar
Makuta, T., Takemura, F., Hihara, E., Matsumoto, Y. & Shoji, M. 2006 Generation of micro gas bubbles of uniform diameter in an ultrasonic field. J. Fluid Mech. 548, 113131.CrossRefGoogle Scholar
McLaughlin, J. B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech. 246, 249265.CrossRefGoogle Scholar
Olla, P. 1997 The lift on a tank-treading ellipsoidal cell in a shear flow. J. Phys. II France 7, 15331540.Google Scholar
O'Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11, 6774.CrossRefGoogle Scholar
O'Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27, 705724.CrossRefGoogle Scholar
Sekimoto, K. & Leibler, L. 1993 A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. Europhys. Lett. 23, 113117.CrossRefGoogle Scholar
Serizawa, A., Inui, T., Yahiro, T. & Kawara, Z. 2005 Pseudo-laminarizaion of micro-bubble containing milky bubbly flow in a pipe. Multiph. Sci. Tech. 17, 79101.CrossRefGoogle Scholar
Shapira, M. & Haber, S. 1988 Low Reynolds number motion of a droplet between two parallel plates. Intl J. Multiph. Flow 14, 483506.CrossRefGoogle Scholar
Shortencarier, M. J., Dayton, P. A., Bloch, S. H., Schumann, P. A., Matsunaga, T. O. & Ferrara, K. W. 2004 A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 821830.CrossRefGoogle ScholarPubMed
Skotheim, J. M. & Mahadevan, L. 2004 Soft lubrication. Phys. Rev. Lett. 92, 245509.CrossRefGoogle ScholarPubMed
Skotheim, J. M. & Mahadevan, L. 2005 Soft lubrication: the elastohydrodynamics of non-conforming and conforming contacts. Phys. Fluids 17, 092101.CrossRefGoogle Scholar
Sugiyama, K. & Sbragaglia, M. 2008 Linear shear flow past a hemispherical droplet adhering to a solid surface. J. Engng Math. 62, 4550.CrossRefGoogle Scholar
Takemura, F. 2004 Migration velocities of spherical solid particles near a vertical wall for Reynolds number from 0.1 to 0.5. Phys. Fluids 16, 204207.CrossRefGoogle Scholar
Takemura, F., Magnaudet, J. & Dimitrakopoulos, P. 2009 Migration and deformation of bubbles rising in a wall-bounded shear flow at finite Reynolds number. J. Fluid Mech. 634, 463486.CrossRefGoogle Scholar
Takemura, F., Takagi, S., Magnaudet, J. & Matsumoto, Y. 2002 Drag and lift force on a bubble rising near a vertical wall in a viscous liquid. J. Fluid Mech. 461, 277300.CrossRefGoogle Scholar
Uijttewaal, W. S. J. & Nijhof, E. J. 1995 The motion of a droplet subjected to linear shear flow including the presence of a plane wall. J. Fluid Mech. 302, 4563.CrossRefGoogle Scholar
Uijttewaal, W. S. J., Nijhof, E. J. & Heethaar, R. M. 1993 Droplet migration, deformation, and orientation in the presence of a plane wall: a numerical study compared with analytical theories. Phys. Fluids A 5, 819825.CrossRefGoogle Scholar
Urzay, J., Smith, S. G. L. & Glover, B. J. 2007 The elastohydrodynamic force on a sphere near a soft wall. Phys. Fluids 19, 103106.CrossRefGoogle Scholar
Vasseur, P. & Cox, R. G. 1976 The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78, 385413.CrossRefGoogle Scholar
Vasseur, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech. 80, 561591.CrossRefGoogle Scholar
Wang, Y. & Dimitrakopoulos, P. 2006 A three-dimensional spectral boundary element algorithm for interfacial dynamics in Stokes flow. Phys. Fluids 18, 082106.CrossRefGoogle Scholar