Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T01:51:40.910Z Has data issue: false hasContentIssue false

On the multiple solutions of coating and rimming flows on rotating cylinders

Published online by Cambridge University Press:  27 November 2017

André v. B. Lopes
Affiliation:
School of Mathematics and Manchester Centre for Nonlinear Dynamics (MCND), University of Manchester, Oxford Road, Manchester M13 9PL, UK
Uwe Thiele
Affiliation:
Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm Klemm Str. 9, 48149 Münster, Germany Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstr. 2, 48149 Münster, Germany
Andrew L. Hazel*
Affiliation:
School of Mathematics and Manchester Centre for Nonlinear Dynamics (MCND), University of Manchester, Oxford Road, Manchester M13 9PL, UK
*
Email address for correspondence: Andrew.Hazel@manchester.ac.uk

Abstract

We consider steady solutions of the Stokes equations for the flow of a film of fluid on the outer or inner surface of a cylinder that rotates with its axis perpendicular to the direction of gravity. We find that previously unobserved stable and unstable steady solutions coexist over an intermediate range of rotation rates for sufficiently high values of the Bond number (ratio of gravitational forces relative to surface tension). Furthermore, we compare the results of the Stokes calculations to the classic lubrication models of Pukhnachev (J. Appl. Mech. Tech. Phys., vol 18, 1977, pp. 344–351) and Reisfeld & Bankoff (J. Fluid Mech., vol. 236, 1992, pp. 167–196); an extended lubrication model of Benilov & O’Brien (Phys. Fluids, vol. 17, 2005, 052106) and Evans et al. (Phys. Fluids, vol. 16, 2004, pp. 2742–2756); and a new lubrication approximation formulated using gradient dynamics. We quantify the range of validity of each model and confirm that the gradient-dynamics model is most accurate over the widest range of parameters, but that the new steady solutions are not captured using any of the simplified models because they contain features that can only be described by the full Stokes equations.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashmore, J., Hosoi, A. E. & Stone, H. A. 2003 The effect of surface tension on rimming flows in a partially filled rotating cylinder. J. Fluid Mech. 479, 6598.Google Scholar
Badali, D., Chugunova, M., Pelinovsky, D. E. & Pollack, S. 2011 Regularized shock solutions in coating flows with small surface tension. Phys. Fluids 23 (9), 093103.Google Scholar
Benilov, E. S., Benilov, M. S. & Kopteva, N. 2008 Steady rimming flows with surface tension. J. Fluid Mech. 597, 91118.Google Scholar
Benilov, E. S., Chapman, S. J., McLeod, J. B., Ockendon, J. R. & Zubkov, V. S. 2010 On liquid films on an inclined plate. J. Fluid Mech. 663, 5369.CrossRefGoogle Scholar
Benilov, E. S., Lapin, V. N. & O’Brien, S. B. G. 2012 On rimming flows with shocks. J. Engng Maths 75, 4962.Google Scholar
Benilov, E. S. & O’Brien, S. B. G. 2005 Inertial instability of a liquid film inside a rotating horizontal cylinder. Phys. Fluids 17, 052106.Google Scholar
Benjamin, T. B., Pritchard, W. G. & Tavener, S. J.1993 Steady and unsteady flows of a highly viscous liquid inside a rotating horizontal cylinder. Preprint.Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2002 Transport phenomena. Appl. Mech. Rev. 55 (1), R1R4.Google Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.Google Scholar
Dijkstra, H. A., Wubs, F. W., Cliffe, K. A., Doedel, E., Dragomirescu, I. F., Eckhardt, B., Gelfgat, A. Yu., Hazel, A. L., Lucarini, V., Salinger, A. G. et al. 2014 Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 145.Google Scholar
Doi, M. 2013 Soft Matter Physics. Oxford University Press.Google Scholar
Evans, P. L., Schwartz, L. W. & Roy, R. V. 2004 Steady and unsteady solutions for coating flow on a rotating horizontal cylinder: two-dimensional theoretical and numerical modeling. Phys. Fluids 16, 27422756.Google Scholar
Gauglitz, P. A. & Radke, C. J. 1988 An extended evolution equation for liquid film break up in cylindrical capillares. Chem. Engng Sci. 43, 14571465.Google Scholar
Gresho, P. M. & Sani, R. L. 1998 Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow, Wiley.Google Scholar
Hansen, E. B. & Kelmanson, M. A. 1994 Steady, viscous, free-surface flow on a rotating cylinder. J. Fluid Mech. 272, 91108.Google Scholar
Hazel, A. L., Heil, M., Waters, S. L. & Oliver, J. M. 2012 On the liquid lining in fluid-conveying curved tubes. J. Fluid Mech. 705, 213233.CrossRefGoogle Scholar
Heil, M. & Hazel, A. L. 2006 oomph-lib – an object-oriented multi-physics finite-element library. In Fluid-Structure Interaction: Modelling, Simulation, Optimisation (ed. Bungartz, H.-J. & Schäfer, M.), pp. 1949. Springer.Google Scholar
Heil, M. & White, J. P. 2002 Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic rings. J. Fluid Mech. 462, 79109.Google Scholar
Hinch, E. J. & Kelmanson, M. A. 2003 On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder. Proc. R. Soc. Lond. A 459, 11931213.Google Scholar
Johnson, R. E. 1988 Steady-state coating flows inside a rotating horizontal cylinder. J. Fluid Mech. 190, 321342.CrossRefGoogle Scholar
Karabut, E. A. 2007 Two regimes of liquid film flow on a rotating cylinder. J. Appl. Mech. Tech. Phys. 48, 5564.Google Scholar
Kelmanson, M. A. 1995 Theoretical and experimetal analyses of the maximum-suppotable fluid load on a rotating cylinder. J. Engng Maths 29, 271285.Google Scholar
Kelmanson, M. A. 2009 On inertial effects in the Moffatt-Pukhnachov coating-flow problem. J. Fluid Mech. 633, 327353.Google Scholar
Kuznetsov, Y. A. 2010 Elements of Applied Bifurcation Theory, 3rd edn. Springer.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1980 Statistical Physics (Course of Theoretical Physics Volume 5). Butterworth-Heinemann.Google Scholar
Lin, T.-S., Rogers, S., Tseluiko, D. & Thiele, U. 2016 Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder. Phys. Fluids 28, 82102.Google Scholar
Mitlin, V. S. 1993 Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 156, 491497.CrossRefGoogle Scholar
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J. Méc. 16.Google Scholar
O’Brien, S. B. G. & Gath, E. G. 1998 The location of a shock in rimming flow. Phys. Fluids 10 (4), 10401042.Google Scholar
Onsager, L. 1931a Reciprocal relations in irreversible processes. i. Phys. Rev. 37 (4), 405.CrossRefGoogle Scholar
Onsager, L. 1931b Reciprocal relations in irreversible processes. ii. Phys. Rev. 38 (12), 2265.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.Google Scholar
Peterson, R. C., Jimack, P. K. & Kelmanson, M. A. 2001 On the stability of viscous free–surface flow supported by a rotating cylinder. Proc. R. Soc. Lond. A 457, 14271445.CrossRefGoogle Scholar
Phillips, O. M. 1960 Centrifugal waves. J. Fluid Mech. 7, 340352.CrossRefGoogle Scholar
Pougatch, K. & Frigaard, I. 2011 Thin film flow on the inside surface of a horizontally rotating cylinder: steady state solutions and their stability. Phys. Fluids 23 (2), 022102.Google Scholar
Preziosi, L. & Joseph, D. D. 1988 The run-off condition for coating and rimming flows. J. Fluid Mech. 187, 99113.CrossRefGoogle Scholar
Pukhnachev, V. V. 1977 Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. J. Appl. Mech. Tech. Phys. 18, 344351.Google Scholar
Reisfeld, B. & Bankoff, S. G. 1992 Non-isothermal flow of a liquid film on a horizontal cylinder. J. Fluid Mech. 236, 167196.Google Scholar
Seiden, G. & Thomas, P. J. 2011 Complexity, segregation, and pattern formation in rotating-drum flows. Rev. Mod. Phys. 83, 1323.Google Scholar
Shewchuk, J. R. 1996 Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering (ed. Lin, M. C.), pp. 203222. Springer.CrossRefGoogle Scholar
Snoeijer, J. H. 2006 Free-surface flows with large slopes: Beyond lubrication theory. Phys. Fluids 18, 021701.Google Scholar
Thiele, U. 2010 Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys.: Condens. Matter 22, 084019.Google Scholar
Thiele, U. 2011 On the depinning of a drop of partially wetting liquid on a rotating cylinder. J. Fluid Mech. 671, 121136.CrossRefGoogle Scholar
Thiele, U., Archer, A. J. & Pismen, L. M. 2016 Gradient dynamics models for liquid films with soluble surfactant. Phys. Rev. Fluids 1, 083903.CrossRefGoogle Scholar
Thiele, U., Archer, A. J. & Plapp, M. 2012 Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration. Phys. Fluids 24, 102107.CrossRefGoogle Scholar
Thiele, U., Todorova, D. V. & Lopez, H. 2013 Gradient dynamics description for films of mixtures and suspensions: dewetting triggered by coupled film height and concentration fluctuations. Phys. Rev. Lett. 111, 117801.CrossRefGoogle ScholarPubMed
Tirumkudulu, M. & Acrivos, A. 2001 Coating flows within a rotating horizontal cylinder: lubrication analysis, numerical computations, and experimental measurements. Phys. Fluids 13, 1419.CrossRefGoogle Scholar
Wilczek, M., Tewes, W. B. H., Gurevich, S. V., Köpf, M. H., Chi, L. & Thiele, U. 2015 Modelling pattern formation in dip-coating experiments. Math. Model. Nat. Phenom. 10, 4460.Google Scholar
Xu, X., Thiele, U. & Qian, T. 2015 A variational approach to thin film hydrodynamics of binary mixtures. J. Phys.: Condens. Matter 27, 085005.Google Scholar
Yih, C.-S. & Kingman, J. F. C. 1960 Instability of a rotating liquid film with a free surface. Proc. R. Soc. Lond. A 258, 6389.Google Scholar
Zienkiewicz, O. C. & Zhu, J. Z. 1992 The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Intl J. Numer. Meth. Engng 33, 13311364.Google Scholar