Published online by Cambridge University Press: 26 April 2006
Two-dimensional, unsteady flow of a viscous, incompressible fluid in a stepped channel has been studied by the numerical solution of the Navier–Stokes equation using an accurate finite-difference method.
With a sinusoidal mass flow rate, the problem has three governing parameters: the Reynolds number, the Strouhal number, and the step height. The effects on the flow of varying all three parameters has been investigated systematically. In appropriate parameter regimes, a strong ‘vortex wave’ is generated during the forward phase when the flow is over the step into the expansion. Secondary effects on the wave can result in a complex flow pattern with each major structure of the flow consisting of an eddy with more than one core. No such wave is found during the reverse phase of the flow. The generation and development of the wave is examined in some detail, and our results are compared and contrasted with those of previous studies, both experimental and theoretical, of flow in non-uniform vessels.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.