Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T13:58:17.312Z Has data issue: false hasContentIssue false

Over-reflection of acoustic waves by supersonic exponential boundary layer flows

Published online by Cambridge University Press:  13 July 2022

Y. Zhang*
Affiliation:
Chair of Fluid Dynamics, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany
S. Görtz
Affiliation:
Chair of Fluid Dynamics, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany Centre for Computational Engineering, Technische Universität Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany
M. Oberlack
Affiliation:
Chair of Fluid Dynamics, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany Centre for Computational Engineering, Technische Universität Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany
*
Email address for correspondence: zhang@fdy.tu-darmstadt.de

Abstract

The two-dimensional acoustic wave equation for inviscid compressible boundary layer flows, i.e. the Pridmore-Brown equation with an exponential velocity profile for homentropic flows, is studied for the reflection and over-reflection of acoustic waves based on the exact solution in terms of the confluent Heun function. The reflection coefficient $R$, which is the ratio of the amplitude of the reflected to that of the incoming acoustic wave, is determined as a function of the streamwise wavenumber $\alpha$, the Mach number $M$ and the incident angle $\phi$ of the acoustic waves. Over-reflection refers to $R>1$, i.e. the reflected wave has a larger amplitude than the incident wave. We prove that, in the supersonic context, energy is always transferred from the base flow to the reflected wave, i.e. $R<1$ does not exist. Meanwhile, this fact is intimately linked to the critical layer. We show that the presence of the critical layer leads to an optimal energy exchange from the base flow into the acoustic wave, i.e. the critical layer ensures $R>1$. In our analysis, we observe a special phenomenon, resonant over-reflection, which is proven to be closely related to resonant frequencies $\omega _r$ of unstable modes of the temporal stability of the base flow. At resonant frequencies of the first unstable mode, the over-reflection coefficient exhibits an unusual peak in an extremely narrow frequency interval. The maximum values of these peaks are largely synchronized with the variation of the growth rate $\omega _i$ of the unstable modes. In addition, resonant over-reflection appears also at resonant frequencies of other higher unstable modes, but their peaks of the over-reflection coefficient are always smaller than that induced by the first unstable mode.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N.J. 1999 Shear instability in shallow water. J. Fluid Mech. 387, 97127.CrossRefGoogle Scholar
Benilov, E. & Lapin, V.N. 2012 On resonant over-reflection of waves by jets. Geophys. Astrophys. Fluid Dyn. 107 (3), 304327.CrossRefGoogle Scholar
Blumen, W., Drazin, P.G. & Billings, D.F. 1975 Shear layer instability of an inviscid compressible fluid. Part 2. J. Fluid Mech. 71 (2), 305316.CrossRefGoogle Scholar
Booker, J.R. & Bretherton, F.P. 1967 The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27 (3), 513539.CrossRefGoogle Scholar
Boyd, J.P. 1983 The continuous spectrum of linear Couette flow with the beta effect. J. Atmos. Sci. 40 (9), 23042308.2.0.CO;2>CrossRefGoogle Scholar
Brambley, E.J. 2011 Well-posed boundary condition for acoustic liners in straight ducts with flow. AIAA J. 49 (6), 12721282.CrossRefGoogle Scholar
Brambley, E.J., Darau, M. & Rienstra, S.W. 2012 The critical layer in linear-shear boundary layers over acoustic linings. J. Fluid Mech. 710, 545568.CrossRefGoogle Scholar
Breeding, R.J. 1971 A non-linear investigation of critical levels for internal atmospheric gravity waves. J. Fluid Mech. 50 (3), 545563.CrossRefGoogle Scholar
Campos, L.M.B.C. 1999 On sound propagation in a linear shear flow. J. Sound Vib. 219 (5), 739770.CrossRefGoogle Scholar
Campos, L.M.B.C. 2007 On 36 forms of the acoustic wave equation in potential flows and inhomogeneous media. Appl. Mech. Rev. 60, 149171.CrossRefGoogle Scholar
Campos, L.M.B.C. & Kobayashi, M.H. 2000 On the reflection and transmission of sound in a thick shear layer. J. Fluid Mech. 424, 303326.CrossRefGoogle Scholar
Campos, L.M.B.C. & Kobayashi, M.H. 2013 On an acoustic oscillation energy for shear flows. Intl J. Aeroacoust. 12 (1–2), 123167.CrossRefGoogle Scholar
Campos, L.M.B.C. & Serrão, P.G.T.A. 1998 On the acoustics of an exponential boundary layer. Phil. Trans. R. Soc. Lond. A 356 (1746), 23352378.CrossRefGoogle Scholar
Cohn, H. 1983 The stability of a magnetically confined radio jet. Astrophys. J. 269, 500512.CrossRefGoogle Scholar
Crighton, D.G. & Leppington, F.G. 1974 Radiation properties of the semi-infinite vortex sheet: the initial-value problem. J. Fluid Mech. 64 (2), 393414.CrossRefGoogle Scholar
Dethe, T., Gill, H. & Green, D. 2019 Causality and dispersion relations. Am. J. Phys. 87, 279290.CrossRefGoogle Scholar
Drazin, P.G. & Reid, W.H. 1979 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Eltayeb, I.A. & McKenzie, J.F. 1975 Critical-level behaviour and wave amplification of a gravity wave incident upon a shear layer. J. Fluid Mech. 72 (4), 661671.CrossRefGoogle Scholar
Gabard, G. 2013 A comparison of impedance boundary conditions for flow acoustics. J. Sound Vib. 332 (4), 714724.CrossRefGoogle Scholar
Galapon, E.A. 2016 The Cauchy principal value and the Hadamard finite part integral as values of absolutely convergent integrals. J. Math. Phys. 57 (3), 033502.CrossRefGoogle Scholar
Gill, A.E. 1965 Instabilities of “top-hat” jets and wakes in compressible fluids. Phys. Fluids 8 (8), 14281430.CrossRefGoogle Scholar
Gloor, M., Obrist, D. & Kleiser, L. 2013 Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow. Phys. Fluids 25 (8), 084102.CrossRefGoogle Scholar
Goldstein, M. & Rice, E. 1973 Effect of shear on duct wall impedance. J. Sound Vib. 30 (1), 7984.CrossRefGoogle Scholar
Harnik, N. & Heifetz, E. 2007 Relating overreflection and wave geometry to the counterpropagating Rossby wave perspective: toward a deeper mechanistic understanding of shear instability. J. Atmos. Sci. 64 (7), 22382261.CrossRefGoogle Scholar
Hau, J. 2017 On the Basic Phenomena of Acoustic Wave Generation and Dynamics in Compressible Shear Flows. Cuvillier.Google Scholar
Henderson, B. 2010 Fifty years of fluidic injection for jet noise reduction. Intl J. Aeroacoust. 9 (1–2), 91122.CrossRefGoogle Scholar
Jones, W.L. 1968 Reflexion and stability of waves in stably stratified fluids with shear flow: a numerical study. J. Fluid Mech. 34 (3), 609624.CrossRefGoogle Scholar
Jones, D.S. 1977 The scattering of sound by a simple shear layer. Phil. Trans. R. Soc. Lond. A 284 (1323), 287328.Google Scholar
Jones, D.S. & Morgan, J.P. 1972 The instability of a vortex sheet on a subsonic stream under acoustic radiation. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 72, pp. 465–488. Cambridge University Press.CrossRefGoogle Scholar
Knessl, C. & Keller, J.B. 1995 Stability of linear shear flows in shallow water. J. Fluid Mech. 303, 203214.CrossRefGoogle Scholar
Knisely, C.P. 2018 Supersonic unstable modes in hypersonic boundary layers with thermochemical nonequilibrium effects. PhD thesis, University of California, Los Angeles.CrossRefGoogle Scholar
Lapin, V.N. 2011 Resonant over-reflection of waves by jets. PhD thesis, University of Limerick, Limerick.Google Scholar
Lighthill, M.J. 1958 An Introduction to Fourier Analysis and Generalised Functions, Cambridge Monographs on Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Lindgren, B., Österlund, J.M. & Johansson, A.V. 2004 Evaluation of scaling laws derived from lie group symmetry methods in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 502, 127152.CrossRefGoogle Scholar
Lindzen, R.S. 1974 Stability of a Helmholtz velocity profile in a continuously stratified, infinite Boussinesq fluid—applications to clear air turbulence. J. Atmos. Sci. 31 (6), 15071514.2.0.CO;2>CrossRefGoogle Scholar
Lindzen, R.S. 1988 Instability of plane parallel shear flow (toward a mechanistic picture of how it works). Pure Appl. Geophys. 126 (1), 103121.CrossRefGoogle Scholar
Lindzen, R.S. & Barker, J.W. 1985 Instability and wave over-reflection in stably stratified shear flow. J. Fluid Mech. 151, 189217.CrossRefGoogle Scholar
Lindzen, R.S., Farrell, B. & Tung, K. 1980 The concept of wave overreflection and its application to baroclinic instability. J. Atmos. Sci. 37 (1), 4463.2.0.CO;2>CrossRefGoogle Scholar
Lindzen, R.S. & Rambaldi, S. 1986 A study of over-reflection in viscous poiseuille flow. J. Fluid Mech. 165, 355372.CrossRefGoogle Scholar
Lindzen, R.S. & Tung, K.K. 1978 Wave overreflection and shear instability. J. Atmos. Sci. 35 (9), 16261632.2.0.CO;2>CrossRefGoogle Scholar
Maplesoft 2019 Maple User Manual. Waterloo, Ontario.Google Scholar
Maslowe, S.A. 1991 Barotropic instability of the bickley jet. J. Fluid Mech. 229, 417426.CrossRefGoogle Scholar
Mathworks 2019 MATLAB User Manual. Natick, Massachusetts.Google Scholar
McKenzie, J.F. 1972 Reflection and amplification of acoustic-gravity waves at a density and velocity discontinuity. J. Geophys. Res. 77 (16), 29152926.CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (3), 521544.CrossRefGoogle Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Miles, J.W. 1957 On the reflection of sound at an interface of relative motion. J. Acoust. Soc. Am. 29 (2), 226228.CrossRefGoogle Scholar
Motygin, O.V. 2018 On evaluation of the confluent Heun functions. In 2018 Days on Diffraction (DD), pp. 223–229. IEEE.CrossRefGoogle Scholar
Myers, M.K. 1980 On the acoustic boundary condition in the presence of flow. J. Sound Vib. 71 (3), 429434.CrossRefGoogle Scholar
Oberlack, M. 2001 A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299328.CrossRefGoogle Scholar
Olver, F.W., Lozier, D.W., Boisvert, R.F. & Clark, C.W. 2010 NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press.Google Scholar
Oppeneer, M. 2014 Sound propagation in lined ducts with parallel flow. PhD thesis, TU Eindhoven.Google Scholar
Payne, D.G. & Cohn, H. 1985 The stability of confined radio jets – the role of reflection modes. Astrophys. J. 291, 655667.CrossRefGoogle Scholar
Perrault-Joncas, D. & Maslowe, S.A. 2008 Linear stability of a compressible coaxial jet with continuous velocity and temperature profiles. Phys. Fluids 20 (7), 074102.CrossRefGoogle Scholar
Pridmore-Brown, D.C. 1958 Sound propagation in a fluid flowing through an attenuating duct. J. Fluid Mech. 4 (4), 393406.CrossRefGoogle Scholar
Ribner, H.S. 1957 Reflection, transmission, and amplification of sound by a moving medium. J. Acoust. Soc. Am. 29 (4), 435441.CrossRefGoogle Scholar
Rienstra, S.W. 2020 Numerical and asymptotic solutions of the Pridmore-Brown equation. AIAA J. 58 (7), 30013018.CrossRefGoogle Scholar
Rienstra, S.W. & Darau, M. 2011 Boundary-layer thickness effects of the hydrodynamic instability along an impedance wall. J. Fluid Mech. 671, 559573.CrossRefGoogle Scholar
Rienstra, S.W. & Hirschberg, A. 2020 An Introduction to Acoustics. TU Eindhoven.Google Scholar
Ronveaux, A. & Arscott, F.M. 1995 Heun's Differential Equations. Clarendon Press.Google Scholar
Rosenthal, A.J. & Lindzen, R.S. 1983 a Instabilities in a stratified fluid having one critical level. Part II: explanation of gravity wave instabilities using the concept of overreflection. J. Atmos. Sci. 40 (3), 521529.2.0.CO;2>CrossRefGoogle Scholar
Rosenthal, A.J. & Lindzen, R.S. 1983 b Instabilities in a stratified fluid having one critical level. Part III: Kelvin–Helmholtz instabilities as overreflected waves. J. Atmos. Sci. 40 (3), 521529.2.0.CO;2>CrossRefGoogle Scholar
Royce-Rolls 2015 The Jet Engine. John Wiley & Sons.Google Scholar
Saddoughi, S.G. & Veeravalli, S.V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Satomura, T. 1981 a An investigation of shear instability in a shallow water. J. Meteorol. Soc. Japan 59 (1), 148167.CrossRefGoogle Scholar
Satomura, T. 1981 b Supplementary note on shear instability in a shallow water. J. Meteorol. Soc. Japan 59 (1), 168171.CrossRefGoogle Scholar
Takehiro, S.I. & Hayashi, Y.Y. 1992 Over-reflection and shear instability in a shallow-water model. J. Fluid Mech. 236, 259279.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 a The instability and acoustic wave modes of supersonic mixing layers inside a rectangular channel. J. Fluid Mech. 203, 5176.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 b On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Yamada, M. & Okamura, M. 1984 Overreflection and overtransmission of Rossby waves. J. Atmos. Sci. 41 (16), 25312535.2.0.CO;2>CrossRefGoogle Scholar
Zaninetti, L. 1986 Numerical results on instabilities of “top hat” jets. Phys. Fluids 29 (1), 332333.CrossRefGoogle Scholar
Zaninetti, L. 1987 Maximum instabilities of compressible jets. Phys. Fluids 30 (2), 612614.CrossRefGoogle Scholar
Zhang, Y & Oberlack, M 2021 Inviscid instability of compressible exponential boundary layer flows. AIP Adv. 11 (10), 105308.CrossRefGoogle Scholar