Published online by Cambridge University Press: 03 December 2018
Leaves falling in air and marine larvae settling in water are examples of unsteady descents due to complex interactions between gravitational and aerodynamic forces. Understanding passive flight is relevant to many branches of engineering and science, ranging from estimating the behaviour of re-entry space vehicles to analysing the biomechanics of seed dispersion. The motion of regularly shaped objects falling freely in homogenous fluids is relatively well understood. However, less is known about how density stratification of the fluid medium affects passive flight. In this paper, we experimentally investigate the descent of heavy discs in stably stratified fluids for Froude numbers of order 1 and Reynolds numbers of order 1000. We specifically consider fluttering descents, where the disc oscillates as it falls. In comparison with pure water and homogeneous saltwater fluid, we find that density stratification significantly enhances the radial dispersion of the disc, while simultaneously decreasing the vertical descent speed, fluttering amplitude and inclination angle of the disc during descent. We explain the physical mechanisms underlying these observations in the context of a quasi-steady force and torque model. These findings could have significant impact on the design of unpowered vehicles and on the understanding of geological and biological transport where density and temperature variations may occur.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.