Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T06:53:19.423Z Has data issue: false hasContentIssue false

Pressure distribution over the leaflets and effect of bending stiffness on fluid–structure interaction of the aortic valve

Published online by Cambridge University Press:  28 November 2019

Ye Chen
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235-1592, USA
Haoxiang Luo*
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235-1592, USA
*
Email address for correspondence: haoxiang.luo@vanderbilt.edu

Abstract

We describe a three-dimensional (3-D) fluid–structure interaction (FSI) simulation study of the aortic valve, where the flow is driven by a specified transient pressure drop along the aorta tube. The thickness of the leaflets is varied from 0.05 mm to 0.8 mm so that the normalized bending rigidity by the systolic pressure gradient covers a wide range from $1.5\times 10^{-4}$ to 0.6. The non-uniform pressure distribution over the leaflets and the transient valve force are calculated, including the ‘water hammer’ effect during rapid closure. With low bending rigidity, the valve functions normally and produces physiological characteristics of healthy valves. However, exceedingly low rigidity leads to flapping motion of the leaflets and, in some cases (e.g. the normalized bending rigidity around 0.001), may reduce the performance index. As the leaflets become much stiffer, the valve is more difficult to open and slower to close, which leads to higher resistance and a reduced flow rate. Therefore, our results suggest that there is an optimal range of bending rigidity for the valve, roughly between 0.003 and 0.04 in normalized term. We further develop a one-dimensional unsteady flow model based on the momentum and mass conservation equations to replace the 3-D flow in the FSI simulation. The new flow model incorporates pressure loss across the valve as well as the leaflet motion. Comparison with the 3-D results shows that the reduced flow model is able to produce a reasonable 3-D deformation sequence of the leaflets, opening area and flow rate, especially in the cases of low bending rigidity.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, M. & Azadani, A. 2017 Stress analysis of transcatheter aortic valve leaflets under dynamic loading: effect of reduced tissue thickness. J. Heart Valve Dis. 26 (4), 386396.Google ScholarPubMed
Anderson, P., Fels, S. & Green, S. 2013 Implementation and validation of a 1D fluid model for collapsible channels. Trans. ASME J. Biomech. Engng 135 (11), 111006.CrossRefGoogle ScholarPubMed
Barker, A. J., Lanning, C. & Shandas, R. 2010 Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann. Biomed. Engng 38 (3), 788800.CrossRefGoogle ScholarPubMed
Bathe, K. J. & Wilson, E. L. 1974 NONSAP – a nonlinear structural analysis problem. Nucl. Engng Des. 29, 266293.CrossRefGoogle Scholar
Bernacca, G. M., O’Connor, B., Williams, D. F. & Wheatley, D. J. 2002 Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young’s modulus and leaflet thickness. Biomaterials 23 (1), 4550.CrossRefGoogle ScholarPubMed
Billiar, K. L. & Sacks, M. S. 2000 Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II – a structural constitutive model. Trans. ASME J. Biomech. Engng 122 (4), 327335.Google Scholar
Borazjani, I. 2013 Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Meth. Appl. Mech. Engng 257, 103116.Google Scholar
Borazjani, I., Ge, L. & Sotiropoulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227 (16), 75877620.Google ScholarPubMed
Cancelli, C. & Pedley, T. 1985 A separated-flow model for collapsible-tube oscillations. J. Fluid Mech. 157, 375404.Google Scholar
Charonko, J. J., Kumar, R., Stewart, K., Little, W. C. & Vlachos, P. P. 2013 Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Engng 41 (5), 10491061.CrossRefGoogle ScholarPubMed
Chen, Y. & Luo, H. 2018 A computational study of the three-dimensional fluid–structure interaction of aortic valve. J. Fluids Struct. 80, 332349.CrossRefGoogle Scholar
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
De Hart, J., Baaijens, F., Peters, G. & Schreurs, P. 2003 A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36 (5), 699712.CrossRefGoogle ScholarPubMed
De Hart, J., Peters, G., Schreurs, P. & Baaijens, F. 2004 Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J. Biomech. 37 (3), 303311.CrossRefGoogle ScholarPubMed
De Tullio, M., Cristallo, A., Balaras, E. & Verzicco, R. 2009 Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622, 259290.CrossRefGoogle Scholar
Doyle, J. F.2008 QED: Static, Dynamic, Stability, and Nonlinear Analysis of Solids and Structures, Software manual (version 4).Google Scholar
Doyle, J. F. 2009 Guided Explorations of the Mechanics of Solids and Structures. Cambridge University Press.CrossRefGoogle Scholar
Faludi, R., Szulik, M., D’hooge, J., Herijgers, P., Rademakers, F., Pedrizzetti, G. & Voigt, J.-U. 2010 Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139 (6), 15011510.CrossRefGoogle Scholar
Fan, R. & Sacks, M. S. 2014 Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47 (9), 20432054.CrossRefGoogle Scholar
Garcia, D. & Kadem, L. 2006 What do you mean by aortic valve area: geometric orifice area, effective orifice area, or Gorlin area? J. Heart Valve Dis. 15 (5), 601608.Google ScholarPubMed
Garcia, D., Kadem, L., Savéry, D., Pibarot, P. & Durand, L.-G. 2006 Analytical modeling of the instantaneous maximal transvalvular pressure gradient in aortic stenosis. J. Biomech. 39 (16), 30363044.CrossRefGoogle ScholarPubMed
Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J. & Dabiri, J. O. 2006 Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. USA 103 (16), 63056308.Google ScholarPubMed
Gilmanov, A., Barker, A., Stolarski, H. & Sotiropoulos, F. 2019 Image-guided fluid–structure interaction simulation of transvalvular hemodynamics: quantifying the effects of varying aortic valve leaflet thickness. Fluids 4 (3), 119.CrossRefGoogle Scholar
Gilmanov, A., Le, T. B. & Sotiropoulos, F. 2015 A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300, 814843.CrossRefGoogle Scholar
Gilmanov, A. & Sotiropoulos, F. 2016 Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theor. Comput. Fluid Dyn. 30 (1–2), 6785.CrossRefGoogle Scholar
Griffith, B. E., Luo, X., McQueen, D. M. & Peskin, C. S. 2009 Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Intl J. Appl. Mech. 1 (01), 137177.CrossRefGoogle Scholar
Hall, J. E. 2015 Guyton and Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences.Google Scholar
Hsu, M.-C., Kamensky, D., Bazilevs, Y., Sacks, M. S. & Hughes, T. J. 2014 Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54 (4), 10551071.CrossRefGoogle ScholarPubMed
Hsu, M.-C., Kamensky, D., Xu, F., Kiendl, J., Wang, C., Wu, M.C., Mineroff, J., Reali, A., Bazilevs, Y. & Sacks, M. S. 2015 Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55 (6), 12111225.CrossRefGoogle ScholarPubMed
Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J. A., Aggarwal, A., Bazilevs, Y., Sacks, M. S. & Hughes, T. J. 2015 An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput. Meth. Appl. Mech. Engng 284, 10051053.Google ScholarPubMed
Leyh, R. G., Schmidtke, C., Sievers, H.-H. & Yacoub, M. H. 1999 Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100 (21), 21532160.CrossRefGoogle ScholarPubMed
Li, K. & Sun, W. 2010 Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Engng 38 (8), 26902701.CrossRefGoogle ScholarPubMed
Luo, H., Dai, H., de Sousa, P. J. F. & Yin, B. 2012 On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput. Fluids 56, 6176.CrossRefGoogle Scholar
Luraghi, G., Wu, W., De Gaetano, F., Matas, J. F. R., Moggridge, G. D., Serrani, M., Stasiak, J., Costantino, M. L. & Migliavacca, F. 2017 Evaluation of an aortic valve prosthesis: fluid–structure interaction or structural simulation? J. Biomech. 58, 4551.Google ScholarPubMed
Machida, T., Izumo, M., Suzuki, K., Yoneyama, K., Kamijima, R., Mizukoshi, K., Takai, M., Kobayashi, Y., Harada, T., Miyake, F. et al. 2015 Value of anatomical aortic valve area using real-time three-dimensional transoesophageal echocardiography in patients with aortic stenosis: a comparison between tricuspid and bicuspid aortic valves. Eur. Heart J.-Cardiovasc. Imaging 16 (10), 11201128.CrossRefGoogle ScholarPubMed
Mao, W., Li, K. & Sun, W. 2016 Fluid–structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Engng Technol. 7 (4), 374388.CrossRefGoogle ScholarPubMed
Markl, M., Draney, M. T., Miller, D. C., Levin, J. M., Williamson, E. E., Pelc, N. J., Liang, D. H. & Herfkens, R. J. 2005 Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130 (2), 456463.CrossRefGoogle ScholarPubMed
Marsden, A. L. & Esmaily-Moghadam, M. 2015 Multiscale modeling of cardiovascular flows for clinical decision support. Appl. Mech. Rev. 67 (3), 030804.CrossRefGoogle Scholar
Merryman, W. D., Huang, H.-Y. S., Schoen, F. J. & Sacks, M. S. 2006 The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech. 39 (1), 8896.Google ScholarPubMed
Mirnajafi, A., Zubiate, B. & Sacks, M. S. 2010 Effects of cyclic flexural fatigue on porcine bioprosthetic heart valve heterograft biomaterials. J. Biomed. Mater. Res. A 94 (1), 205213.CrossRefGoogle ScholarPubMed
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A. & von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.Google ScholarPubMed
Morbiducci, U., Ponzini, R., Rizzo, G., Cadioli, M., Esposito, A., De Cobelli, F., Del Maschio, A., Montevecchi, F. M. & Redaelli, A. 2009 In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Engng 37 (3), 516531.Google ScholarPubMed
Nakai, H., Takeuchi, M., Yoshitani, H., Kaku, K., Haruki, N. & Otsuji, Y. 2009 Pitfalls of anatomical aortic valve area measurements using two-dimensional transoesophageal echocardiography and the potential of three-dimensional transoesophageal echocardiography. Eur. J. Echocardiogr. 11 (4), 369376.Google ScholarPubMed
Peck, K., Wang, J., Shaw, J. & Dart, A. 2016 Aortic valve area (AVA) and dimensionless performance index (DPI) predicts progression of aortic stenosis. Heart Lung Circ. 25, S265S266.CrossRefGoogle Scholar
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (3), 220252.Google Scholar
Reul, H., Vahlbruch, A., Giersiepen, M., Schmitz-Rode, T., Hirtz, V. & Effert, S. 1990 The geometry of the aortic root in health, at valve disease and after valve replacement. J. Biomech. 23 (2), 181185183191.CrossRefGoogle ScholarPubMed
Sacks, M. S., Smith, D. B. & Hiester, E. D. 1998 The aortic valve microstructure: effects of transvalvular pressure. J. Biomed. Mater. Res. 41 (1), 131141.Google ScholarPubMed
Sahasakul, Y., Edwards, W. D., Naessens, J. M. & Tajik, A. J. 1988 Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62 (7), 424430.CrossRefGoogle ScholarPubMed
Saikrishnan, N., Mirabella, L. & Yoganathan, A. P. 2015 Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves. Biomech. Model. Mechanobiol. 14 (3), 577588.CrossRefGoogle Scholar
Schoenhagen, P., Hausleiter, J., Achenbach, S., Desai, M. Y. & Tuzcu, E. M. 2011 Computed tomography in the evaluation for transcatheter aortic valve implantation (TAVI). Cardiovasc. Diagn. Therapy 1 (1), 4456.Google Scholar
Sengupta, P. P., Pedrizzetti, G., Kilner, P. J., Kheradvar, A., Ebbers, T., Tonti, G., Fraser, A. G. & Narula, J. 2012 Emerging trends in CV flow visualization. JACC: Cardiovasc. Imaging 5 (3), 305316.Google ScholarPubMed
Seo, J. H., Vedula, V., Abraham, T., Lardo, A. C., Dawoud, F., Luo, H. & Mittal, R. 2014 Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26 (12), 121901.Google Scholar
Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.CrossRefGoogle Scholar
Spühler, J. H., Jansson, J., Jansson, N. & Hoffman, J. 2018 3D fluid–structure interaction simulation of aortic valves using a unified continuum ALE FEM model. Front. Physiol. 9, 363.CrossRefGoogle ScholarPubMed
Sun, W., Martin, C. & Pham, T. 2014 Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Engng 16, 5376.Google ScholarPubMed
Swanson, W. M. & Clark, R. E. 1974 Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ. Res. 35 (6), 871882.CrossRefGoogle Scholar
Thubrikar, M., Heckman, J. & Nolan, S. 1993 High speed cine-radiographic study of aortic valve leaflet motion. J. Heart Valve Dis. 2 (6), 653661.Google ScholarPubMed
Tian, F.-B., Dai, H., Luo, H., Doyle, J. F. & Rousseau, B. 2014 Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451469.CrossRefGoogle ScholarPubMed
Van Loon, R. 2010 Towards computational modelling of aortic stenosis. Intl J. Numer. Meth. Biomed. Engng 26 (3–4), 405420.Google Scholar
Wu, W., Pott, D., Mazza, B., Sironi, T., Dordoni, E., Chiastra, C., Petrini, L., Pennati, G., Dubini, G., Steinseifer, U. et al. 2016 Fluid–structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Engng 44 (2), 590603.CrossRefGoogle Scholar
Yap, C. H., Saikrishnan, N., Tamilselvan, G. & Yoganathan, A. P. 2011 Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. J. Biomech. Engng 133 (6), 061007.Google ScholarPubMed
Yoganathan, A. P., Chaux, A., Gray, R. J., Woo, Y.-R., DeRobertis, M., Williams, F. P. & Matloff, J. M. 1984 Bileaflet, tilting disc and porcine aortic valve substitutes: in vitro hydrodynamic characteristics. J. Am. Coll. Cardiol. 3 (2 Part 1), 313320.CrossRefGoogle ScholarPubMed
Yoganathan, A. P., He, Z. & Casey Jones, S. 2004 Fluid mechanics of heart valves. Annu. Rev. Biomed. Engng 6, 331362.CrossRefGoogle ScholarPubMed
Yousefi, A., Bark, D. L. & Dasi, L. P. 2017 Effect of arched leaflets and stent profile on the hemodynamics of tri-leaflet flexible polymeric heart valves. Ann. Biomed. Engng 45 (2), 464475.Google ScholarPubMed
Supplementary material: Image

Chen et al. supplementary movie 1

Transient valve deformation and corresponding force on the valve for h=0.1 mm.
Download Chen et al. supplementary movie 1(Image)
Image 10.7 MB
Supplementary material: Image

Chen et al. supplementary movie 2

Transient valve deformation and corresponding force on the valve for h=0.3 mm.

Download Chen et al. supplementary movie 2(Image)
Image 5.9 MB
Supplementary material: Image

Chen et al. supplementary movie 3

Valve deformation and corresponding vortex structures in the flow during systole for h=0.3 mm

Download Chen et al. supplementary movie 3(Image)
Image 6.8 MB
Supplementary material: File

Chen et al. supplementary material

Deformation sequences for the three thin-leaflet cases with h=0.05, 0.08, and 0.1 mm from 3-D FSI simulations.

Download Chen et al. supplementary material(File)
File 795.2 KB
Supplementary material: File

Chen et al. supplementary material

Comparison of the GOA for the case of h=0.3 mm where both the domain length and pressure loading are doubled. Image credit for the graphical abstract: Ye Chen, Haoxiang Luo, and Match Health (https://www.matchhealth.com)
Download Chen et al. supplementary material(File)
File 31.4 KB