Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T10:10:24.379Z Has data issue: false hasContentIssue false

Propeller wake evolution mechanisms in oblique flow conditions

Published online by Cambridge University Press:  27 April 2018

M. Felli*
Affiliation:
INSEAN-CNR, National Research Council, Maritime Research Centre, Via di Vallerano 139, 00128 Roma, Italy
M. Falchi
Affiliation:
INSEAN-CNR, National Research Council, Maritime Research Centre, Via di Vallerano 139, 00128 Roma, Italy
*
Email address for correspondence: mario.felli@cnr.it

Abstract

In the present study the wake flow past an isolated propeller operating in oblique flow conditions is investigated experimentally. In particular, the investigation concerns a systematic topological comparison of the wake behaviour in axisymmetric and in oblique inflow conditions, for three inclination angles, and is focused on an analysis of the underlying mechanisms of wake evolution and instability. To this end, the experiment has been designed to investigate the dynamics of propeller vortical structures over a wide spatial extent covering the wake region from the propeller disk up to 4.5 diameters in the streamwise direction. Detailed flow measurements have been undertaken by particle image velocimetry (PIV), using a multicamera configuration with three cameras arranged side by side. This allowed simultaneous acquisition of a large flow extent at a spatial resolution adequate to resolve the smallest vortical structures involved in the process of propeller wake instability. The analysis has been based on both phase-locked averaged and instantaneous flow fields. The study extends the knowledge on the subject of propeller wake dynamics, highlighting the major hydrodynamic effects that non-axisymmetric propeller operating conditions exert on the mechanisms of wake evolution, instability and breakdown, such as asymmetric destabilization of the tip vortices on the leeward and windward sides of the wake, and the interference between the tip and the junction vortices, as well as the cause–effect relation between the breakdown of the blade trailing wake and the instability of the tip and hub vortices.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Aeschlimann, V., Beaulieu, S., Houde, S., Dan Ciocan, G. & Deschenes, C. 2013 Inter-blade flow analysis of a propeller turbine runner using stereoscopic PIV. Eur. J. Mech. (B/Fluids) 42, 121128.CrossRefGoogle Scholar
Atsavapranee, P., Miller, R., Day, C., Klamo, J. & Fry, D. 2010 Steady-turning experiments and RANS simulations on a surface combatant hull form (model #5617). In Proceedings of 28th Symposium on Naval Hydrodynamics, Pasadena, CA, Office of Naval Research.Google Scholar
Bastankhah, M. & Porté-Agel, F. 2016 Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 806, 506541.Google Scholar
Bastankhah, M. & Porté-Agel, F. 2017 Wind tunnel study of the wind turbine interaction with a boundary-layer flow: upwind region, turbine performance, and wake region. Phys. Fluids 29 (6), 065015.Google Scholar
Budich, B., Schmidt, S. J. & Adams, N. A. 2015 Numerical simulation of cavitating ship propeller flow and assessment of erosion aggressiveness. In 6th Conference on Computational Methods in Marine Engineering (Marine 2015), Rome, Italy, ECCOMAS.Google Scholar
Bhagwat, M. J. & Leishman, J. G. 2000 Stability analysis of helicopter rotor wakes in axial flight. J. Am. Helicopter Assoc. 45, 165178.CrossRefGoogle Scholar
Carlton, J. 2012 Marine Propellers and Propulsion. Elsevier.Google Scholar
Chamorro, L., Hill, C., Morton, S., Ellis, C., Arndt, R. E. & Sotiropoulos, F. 2013 On the interaction between a turbulent open channel flow and an axial-flow turbine. J. Fluid Mech. 716, 658670.Google Scholar
Chesnakas, C. & Jessup, S. 1998 Experimental characterization of propeller tip flow. In Proceedings of the 22nd Symposium on Naval Hydrodynamics, Washington, Office of Naval Research.Google Scholar
Chih-Chung, Y.1990 The effects of forebody strakes on asymmetric vortices on a vertically launched missile. PhD thesis, Naval Postgraduate School, Monterey.Google Scholar
Cumpsty, N. A. & Lowrie, B. W. 1974 The cause of tone generation by aeroengine fans at high subsonic speeds and the effect of forward speed. J. Engng Power 96 (3), 228234.Google Scholar
Del Pino, C., Parras, L., Felli, M. & Fernandez-Feria, R. 2011 Structure of trailing vortices: comparison between particle image velocimetry measurements and theoretical models. Phys. Fluids 23 (1), 013602.CrossRefGoogle Scholar
Di Felice, F., Di Florio, D., Felli, M. & Romano, G. P. 2004 Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry. J. Ship Res. 48 (2), 168190.CrossRefGoogle Scholar
Di Mascio, A., Muscari, R. & Dubbioso, G. 2015 On the wake dynamics of a propeller operating in drift. J. Fluid Mech. 754, 263307.CrossRefGoogle Scholar
Dubbioso, G., Muscari, R. & Di Mascio, A. 2013 Analysis of the performance of a marine propeller in oblique flow. Comput. Fluids 75, 86102.Google Scholar
Dubbioso, G., Muscari, R. & Di Mascio, A. 2014 Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Comput. Fluids 92, 5681.CrossRefGoogle Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 117.Google Scholar
Felli, M. & Di Felice, F. 2005 Propeller wake analysis in not uniform inflow by LDV phase sampling techniques. J. Marine Sci. Technol. 10 (4), 159172.Google Scholar
Felli, M., Di Felice, F., Guj, G. & Camussi, R. 2006 Analysis of the propeller wake evolution by pressure and velocity phase measurements. Exp. Fluids 1, 111.Google Scholar
Felli, M., Guj, G. & Camussi, R. 2008 Effect of the number of blades on propeller wake evolution. Exp. Fluids 44, 409418.Google Scholar
Frandsen, S. & Thøgersen, M. L. 1999 Integrated fatigue loading for wind turbines in wind farms by combining ambient turbulence and wakes. Wind Engng 23 (6), 327339.Google Scholar
Gand, F., Deck, S., Brunet, V. & Sagaut, P. 2010 Flow dynamics past a simplified wing body junction. Phys. Fluids 22, 115111.CrossRefGoogle Scholar
Grant, I. & Parkin, P. 2000 A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw. Exp. Fluids 28 (4), 368376.Google Scholar
Grant, I., Parkin, P. & Wang, X. 1997 Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation. Exp. Fluids 23 (6), 513519.Google Scholar
Gupta, B. P. & Loewy, R. G. 1974 Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices. AIAA J. 12, 13811387.Google Scholar
Haans, W., Sant, T., Van Kuik, G. & Van Bussel, G. 2005 Measurement and modelling of tip vortex paths in the wake of a HAWT under yawed flow conditions. In 43th AIAA Aerospace Sciences Meeting and Exhibit, pp. 136145. AIAA.Google Scholar
Haans, W., Van Kuik, G. & Van Bussel, G. J. W. 2007 Experimentally observed effects of yaw misalignment on the inflow in the rotor plane. J. Phys.: Conf. Ser. 75, 012012.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193–208.Google Scholar
Huyer, S. A. & Snarski, S. R. 2003 Analysis of a turbulent propeller inflow. Trans. ASME J. Fluids Engng 125 (3), 533542.Google Scholar
Jessup, S. D.1989 An experimental investigation of viscous aspects of propeller blade flow. PhD thesis, The Catholic University of America, Washington DC, 1989.Google Scholar
Jiménez, Á., Crespo, A. & Migoya, E. 2010 Application of a LES technique to characterize the wake deflection of a wind turbine in yaw. Wind Energy 13 (6), 559572.Google Scholar
Joukowsky, N. E. 1912 Vortex theory of screw propeller, I–IV. Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya: part I 16 (1), 131.Google Scholar
Kerwin, J. E. 1986 Marine propellers. Annu. Rev. Fluid Mech. 18, 367403.CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2017 Large eddy simulation of propeller wake instabilities. J. Fluid Mech. 814, 361396.Google Scholar
Landgrebe, A. J. 1972 The wake geometry of a hovering rotor and its influence on rotor performance. J. Am. Hel. Soc. 17 (4), 315.Google Scholar
Leishmann, J. G. 2006 Principles of Helicopter Aerodynamics. Wiley.Google Scholar
Leung, Y. C. & Yang, Y. 2012 Wind energy development and its environmental impact: a review. Renew. Sustainable Energy Rev. 16, 10311039.Google Scholar
Levy, H. & Forsdyke, A. G. 1928 The steady motion and stability of a helical vortex. Proc. R. Soc. Lond. A 120, 670690.Google Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.Google Scholar
Mankbadi, R. 1994 Transition, Turbulence and Noise: Theory and Applications for Scientists and Engineers. Springer Science and Business Media.Google Scholar
Marshall, J. S. 2003 Wake dynamics of yawed cylinders. Trans. ASME J. Fluids Engng 125, 97103.CrossRefGoogle Scholar
Micallef, D. & Sant, T. 2016 A review of wind turbine yaw aerodynamics. In Wind Turbines – Design, Control and Applications (ed. Aissaoui, A. G. & Tahour, A.), chap. 2, ISBN 978-953-51-2496-2.Google Scholar
Micallef, D., Bussel, G., Ferreira, C. S. & Sant, T. 2013 An investigation of radial velocities for a horizontal axis wind turbine in axial and yawed flows. Wind Energy 16 (4), 529544.Google Scholar
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.Google Scholar
Okulov, V. L. & Sørensen, J. N. 2007 Stability of helical tip vortices in rotor far wake. J. Fluid Mech. 576, 125.CrossRefGoogle Scholar
Rajaratnam, N. 1976 Turbulent Jets. Elsevier.Google Scholar
Robison, R. A. V. & Peake, N. 2014 Noise generation by turbulence–propeller interaction in asymmetric flow. J. Fluid Mech. 758, 121149.Google Scholar
Salvatore, F., Pereira, F., Felli, M., Calcagni, D. & Di Felice, F.2006 Description of the INSEAN E779A propeller experimental dataset. INSEAN Tech. Rep. 2006-085.Google Scholar
Scarano, F. 2002 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13, 119.Google Scholar
Simpson, R. 2001 Junction flows. Annu. Rev. Fluid Mech. 33, 415443.CrossRefGoogle Scholar
Stevens, J. A. M. & Meneveau, C. 2014 Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms. J. Renew. Sustainable Energy 6, 043102.Google Scholar
Stevens, J. A. M. & Meneveau, C. 2017 Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49, 311339.Google Scholar
Surry, J. & Surry, D.1967 The effect of inclination on the Strouhal number and other wake properties of circular cylinders at subcritical Reynolds numbers. Tech. Rep., University of Toronto, Institute for Aerospace Studies.Google Scholar
Thakur, A., Liu, X. & Marshall, J. S. 2004 Wake flow of single and multiple yawed cylinders. Trans. ASME J. Fluids Engng 126, 861870.CrossRefGoogle Scholar
Varshney, K. 2013 Characteristics of helical tip vortices in a wind turbine near wake. Theor. Appl. Climatol. 111, 427435.Google Scholar
Vermeer, L. J., Sorensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39, 467510.CrossRefGoogle Scholar
Viviani, M., Podenzana Bonvino, C., Mauro, S., Cerruti, M., Guadalupi, D. & Menna, A. 2007 Analysis of asymmetrical shaft power increase during tight manoeuvre. In 9th International Conference on Fast Sea Transportation (FAST 2007), Shanghai, China. GICAN.Google Scholar
Walther, J. H., Guénot, M., Machefaux, E., Rasmussen, J. T., Chatelain, P., Okulov, V. L., Sørensen, J. N., Bergdorf, M. & Koumoutsakos, P. 2007 A numerical study of the stability of helical vortices using vortex methods. J. Phys.: Conf. Ser. 75, 012034.Google Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39, 10961100.CrossRefGoogle Scholar
Widnall, S. E. 1972 The stability of helical vortex filament. J. Fluid Mech. 54, 641663.Google Scholar
Wood, D. H. & Boersma, J. 2001 On the motion of multiple helical vortices. J. Fluid Mech. 447, 149171.Google Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1985 Natural large-scale structures in the axisymmetric mixing layer. J. Fluid Mech. 138, 325351.Google Scholar