Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T06:14:31.791Z Has data issue: false hasContentIssue false

Random advection of chemically reacting species

Published online by Cambridge University Press:  12 April 2006

Ronald E. Meyers
Affiliation:
Department of Energy and Environment, Brookhaven National Laboratory, Upton, New York
Edward E. O'Brien
Affiliation:
Department of Mechanical Engineering, State University of New York, Stony Brook
L. Ridgway Scott
Affiliation:
Applied Mathematics Department, Brookhaven National Laboratory, Upton, New York

Abstract

In the absence of molecular diffusion there exists a space-independent transformation which transforms the probability density of dynamically passive scalars undergoing chemical reaction and advection into the probability density of scalar fields undergoing advection alone. In two well-known limits the equation for the probability density of non-reacting scalars is linear and parabolic in physical space. In such cases it is shown that the equation for the probability density of reacting scalars is likewise linear and parabolic in physical space, although hyperbolic in concentration space. The general solution of such an equation is obtained and the particular case of a second-order, decaying, single-species reaction is displayed.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1952 Proc. Camb. Phil. Soc. 48, 345.
Batchelor, G. K. & Townsend, A. A. 1956 In Turbulent Diffusion, Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies), p. 352. Cambridge University Press.
Bilger, R. W. 1976 Comb. Sci. Tech. 13, 155.
Bourret, R. 1960 Can. J. Phys. 38, 665.
Brissaud, A. & Frisch, U. 1974 J. Math. Phys. 15, 524.
Corrsin, S. 1968 A.I.A.A. J. 6, 1997.
Dopazo, C. 1973 Ph.D. thesis, State University of New York, Stony Brook.
Hill, J. C. 1970 Phys. Fluids 13, 1394.
Hill, J. C. 1976 Ann. Rev. Fluid Mech. 8, 135.
Ievlev, V. M. 1970 Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza 5, 223.
Kraichnan, R. H. 1968 Phys. Fluids 11, 945.
Kraichnan, R. H. 1974 J. Fluid Mech. 64, 737.
Kuznetsov, V. R. & Frost, V. A. 1973 Izv. Akad. Nauk SSSR, Mekh. Zh. i Gaza 2, 58.
Lin, C. H. & O'BRIEN, E. E. 1974 J. Fluid Mech. 64, 195.
Lundgren, T. S. 1967 Phys. Fluids 10, 969.
Meyers, R. E., O'BRIEN, E. E. & Scott, L. R.1977 Brookhaven Nat. Lab. Tech. Rep.
Monin, A. S. 1967 Prikl. Mat. Mech. 31, 1057.
O'Brien, E. E.1963 Coll. Engng, State Univ. New York, Stony Brook Rep. no. 2.
O'Brien, E. E.1971 Phys. Fluids 14, 1326.
O'Brien, E. E., Meyers, R. E. & Benkovitz, C. M.1976 Preprints 3rd Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, North Carolina, p. 160.
Papanicolaou, G. C. & Kohler, W. 1974 Comm. Pure Appl. Math. 27, 641.
Riley, J. J. 1973 Phys. Fluids 16, 1160.
Roberts, P. H. 1961 J. Fluid Mech. 11, 257.
Saffman, P. G. 1960 J. Fluid Mech. 8, 273.
Taylor, G. I. 1921 Proc. Lond. Math. Soc. (2), 20, 196.
Toor, H. L. 1962 A.I.Ch.E. J. 8, 70.