Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T04:21:29.108Z Has data issue: false hasContentIssue false

Rayleigh–Bénard convection in viscoelastic liquid bridges

Published online by Cambridge University Press:  05 October 2020

Marcello Lappa*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, GlasgowG1 1XJ, UK
Alessio Boaro
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, GlasgowG1 1XJ, UK
*
Email address for correspondence: marcello.lappa@strath.ac.uk

Abstract

Rayleigh–Bénard convection in a floating zone held by the surface tension between two supporting disks at different temperatures is considered. Through direct numerical solution of the mixed parabolic–elliptic–hyperbolic set of governing equations in complete time-dependent and nonlinear form, we investigate the still unknown patterns and spatio-temporal states that are produced when the fluid has viscoelastic properties. The following conditions are examined: Prandtl number Pr = 8, aspect ratio (A = length/diameter) in the range 0.17 ≤ A ≤ 1 and different values of the elasticity number (0 ≤ θ ≤ 0.2). It is shown that, in addition to elastic overstability, an important ingredient of the considered dynamics is the existence of multiple solutions i.e. ‘attractors’ coexisting in the space of phases and differing with respect to the basin of attraction. We categorize the emerging states as modes with dominant vertical or horizontal vorticity and analyse the related waveforms, generally consisting of standing waves with central symmetry or oscillatory modes featuring almost parallel rolls, which periodically break and reform in time with a new orientation in space. In order to characterize the peculiar features of these flows, the notions of disturbance node and the topological concept of ‘knot’ are used. Azimuthally travelling waves are also possible in certain regions of the space of parameters, though they are generally taken over by convective modes with dominant pulsating nature as the elasticity parameter is increased. The case of an infinite horizontal layer is finally considered as an idealized model to study the asymptotic fluid-dynamic behaviour of the liquid bridge in the limit as its aspect ratio tends to zero.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, M. A., Oliveira, P. J. & Pinho, F. T. 2003 Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions. J. Non-Newtonian Fluid Mech. 110, 4575.CrossRefGoogle Scholar
Aly, A. A. 2015 Heat treatment of polymers: A review. Intl J. Mater. Chem. Phys. 1 (2), 132140.Google Scholar
Armfield, S. & Street, R. 2002 An analysis and comparison of the time accuracy of fractional-step methods for the Navier–Stokes equations on staggered grids. Intl J. Numer. Meth. Fluids 38 (3), 255282.CrossRefGoogle Scholar
Armstrong, R. C. 1974 a Kinetic theory and rheology of dilute solutions of flexible macromolecules. I. Steady state behavior. J. Chem. Phys. 60, 724728.CrossRefGoogle Scholar
Armstrong, R. C. 1974 b Kinetic theory and rheology of dilute solutions of flexible macromolecules. II. Linear viscoelasticity. J. Chem. Phys. 60, 729733.CrossRefGoogle Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, 2nd edn, vol. 2. John Wiley & Sons.Google Scholar
Bonito, A., Clément, P. & Picasso, M. 2011 Viscoelastic flows with complex free surfaces: Numerical analysis and simulation. In Handbook of Numerical Analysis, Special Volume (Vol. XVI): Numerical Methods for Non-Newtonian Fluids (ed. Glowinski, R. & Xu, J.), pp. 305370. Elsevier.CrossRefGoogle Scholar
Boronska, K. & Tuckerman, L. S. 2006 Standing and travelling waves in cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 559, 279298.CrossRefGoogle Scholar
Borońska, K. & Tuckerman, L. S. 2010 a Extreme multiplicity in cylindrical Rayleigh–Bénard convection: I. Time-dependence and oscillations. Phys. Rev. E 81, 036320.CrossRefGoogle ScholarPubMed
Borońska, K. & Tuckerman, L. S. 2010 b Extreme multiplicity in small aspect ratio Rayleigh–Bénard convection: II. Bifurcation diagram and symmetry classification. Phys. Rev. E 81, 036321.CrossRefGoogle Scholar
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168 (2), 464499.CrossRefGoogle Scholar
Busse, F. H. 1967 On the stability of two-dimensional convection in a layer heated from below. J. Math. Phys. 46, 140150.CrossRefGoogle Scholar
Busse, F. H. & Clever, R. M. 1979 Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319335.CrossRefGoogle Scholar
Busse, F. H. & Whitehead, J. A. 1971 Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 47, 305320.CrossRefGoogle Scholar
Busse, F. H. & Whitehead, J. A. 1974 Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid Mech. 66, 6779.CrossRefGoogle Scholar
Chen, H. & Saghir, M. Z. 1994 Three-dimensional Marangoni convection in the asymmetrically heated float zone. Microgravity Q. 4, 3946.Google Scholar
Cheng, T. C., Li, Y. H. & Lin, T. F. 2000 Effects of thermal boundary condition on buoyancy driven transitional air flow in a vertical cylinder heated from below. Numer. Heat Transfer 37 (8), 917936.Google Scholar
Cherizol, R., Sain, M. & Tjong, J. 2015 Review of non-Newtonian mathematical models for rheological characteristics of viscoelastic composites. Green Sustain. Chem. 5, 614.CrossRefGoogle Scholar
Chung, C. I. 2010 Extrusion of Polymers: Theory & Practice, 2nd edn. Hanser.Google Scholar
Clever, R. M. & Busse, F. H. 1989 Three-dimensional knot convection in a layer heated from below. J. Fluid Mech. 198, 345363.CrossRefGoogle Scholar
Clever, R. M. & Busse, F. H. 1993 Tertiary and quarternary states of fluid flow and the transition to turbulence. J. Appl. Sci. Res. 51 (1–2), 2529.CrossRefGoogle Scholar
Clever, R. M. & Busse, F. H. 1994 Steady and oscillatory bimodal convection. J. Fluid Mech. 271, 103118.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.CrossRefGoogle Scholar
Crespo del Arco, E. & Bontoux, P. 1989 Numerical simulations and analysis of axisymmetric convection in a vertical cylinder: An effect of Prandtl number. Phys. Fluids A1, 13481359.CrossRefGoogle Scholar
Crespo del Arco, E., Bountoux, P., Sani, R. L., Hardin, G. & Extrémet, G. P. 1988 Steady and oscillatory convection in vertical cylinders heated from below. Numerical simulation of asymmetric flow regimes. Adv. Space Res. 8 (12), 281292.CrossRefGoogle Scholar
Croquette, V. 1989 a Convective pattern dynamics at low Prandtl number: Part I. Contemp. Phys. 30 (2), 113133.CrossRefGoogle Scholar
Croquette, V. 1989 b Convective pattern dynamics at low Prandtl number: Part II. Contemp. Phys. 30 (3), 153171.CrossRefGoogle Scholar
Croquette, V., Le Gal, P. & Pocheau, A. 1986 Spatial features of the transition to chaos in an extended system. Phys. Scr. T13, 135138.CrossRefGoogle Scholar
Croquette, V., Mory, M. & Schosseler, F. 1983 Rayleigh–Bénard convective structures in a cylindrical container. J. Phys. 44 (3), 293301.CrossRefGoogle Scholar
Curry, J. & Yorke, J. A. 1977 A transition from Hopf bifurcation to chaos: computer experiments with maps R2. In The Structure of Attractors in Dynamical Systems (ed. Markley, N. G., Martin, J. C. & Perrizo, W.), Lecture Notes in Mathematics, vol. 668, p. 48. Springer.CrossRefGoogle Scholar
Delgado-Buscalioni, R., Crespo del Arco, E. & Bontoux, P. 2001 Flow transitions of a low-Prandtl-number fluid in an inclined 3D cavity. Eur. J. Mech. B/Fluids 329, 117.Google Scholar
Du, Q., Liu, C. & Yu, P. 2005 FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (3), 709731.CrossRefGoogle Scholar
Eltayeb, I. A. 1977 Nonlinear thermal convection in an elastico-viscous layer heated from below. Proc. R. Soc. Lond. A 356, 161176.Google Scholar
Favero, J. L., Secchi, A. R., Cardozo, N. S. M. & Jasak, H. 2010 Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newtonian Fluid Mech. 165, 16251636.CrossRefGoogle Scholar
Frank, S. & Schwabe, D. 1997 Temporal and spatial elements of thermocapillary convection in floating zones. Exp. Fluids 23, 234251.CrossRefGoogle Scholar
Gelfgat, A. Y. 1999 Different modes of Rayleigh–Bénard instability in two- and three-dimensional rectangular enclosures. J. Comput. Phys. 156, 300324.CrossRefGoogle Scholar
Gelfgat, A. Y., Rubinov, A., Bar-Yoseph, P. Z. & Solan, A. 2005 On the three-dimensional instability of thermocapillary convection in arbitrarily heated floating zones in microgravity environment. Fluid Dyn. Mater. Process. 1 (1), 2132. doi:10.3970/fdmp.2005.001.021Google Scholar
Green, T. 1968 Oscillating convection in an elastic-viscous liquid. Phys. Fluids 11, 14101412.CrossRefGoogle Scholar
Gresho, P. M. & Sani, R. T. 1987 On pressure boundary conditions for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 7, 11111145.CrossRefGoogle Scholar
Grewell, D. & Benatar, A. 2007 Welding of plastics: fundamentals and new developments. Intl Polym. Process. 22 (1), 4360.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 1998 Mechanism of elastic instability in Couette flow of polymer solutions, Experiment. Phys. Fluids 10 (10), 24512463.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 5355. doi:10.1038/35011019CrossRefGoogle Scholar
Guermond, J.-L., Minev, P. & Shen, J. 2006 An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engng 195, 60116045.CrossRefGoogle Scholar
Hardin, G. R. & Sani, R. L. 1993 Buoyancy-driven instability in a vertical cylinder: binary fluids with with Soret effect. Part 2: Weakly non-linear solutions. Intl J. Numer. Meth. Fluids 17, 755786.CrossRefGoogle Scholar
Hof, B., Lucas, G. J. & Mullin, T. 1999 Flow state multiplicity in convection. Phys. Fluids 11, 28152817.CrossRefGoogle Scholar
Hu, K. X., He, M. & Chen, Q. S. 2016 Instability of thermocapillary liquid layers for Oldroyd-B fluid. Phys. Fluids 28, 033105.CrossRefGoogle Scholar
Hu, W. R., Tang, Z. M. & Li, K. 2008 Thermocapillary convection in floating zones. Appl. Mech. Rev. 61 (1), 010803.CrossRefGoogle Scholar
Hüseyin, D., Williams, R. W. & Akyildiz, F. T. 1999 The singularities near the corner of a viscoelastic fluid in a 2D cavity. Maths. Comput. Appl. 4 (1), 3944.Google Scholar
Jang, D. S., Jetli, R. & Acharya, S. 1986 Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer. Heat Transfer B 10, 209228.CrossRefGoogle Scholar
Kang, Q., Wu, D., Duan, L., Hu, L., Wang, J., Zhang, P. & Hu, W. R. 2019 The effects of geometry and heating rate on thermocapillary convection in the liquid bridge. J. Fluid Mech. 881, 951982.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Kengne, J., Nguomkam Negou, A., Tchiotsop, D., Kamdoum Tamba, V. & Kom, G. H. 2018 On the dynamics of chaotic systems with multiple attractors: a case study. In Recent Advances in Nonlinear Dynamics and Synchronization. Studies in Systems, Decision and Control (ed. Kyamakya, K., Mathis, W., Stoop, R., Chedjou, J. & Li, Z.), vol. 109, pp. 17–32. Springer.Google Scholar
Khayat, R. 1994 Chaos and overstability in the thermal convection of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 53, 227255.CrossRefGoogle Scholar
Khayat, R. 1995 Nonlinear overstability in the thermal convection of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 58, 331356.CrossRefGoogle Scholar
Kovalevskaya, K. V. & Lyubimova, T. P. 2011 Onset and nonlinear regimes of convection of an elastoviscous fluid in a closed cavity heated from below. Fluid Dyn. 46, 854863.CrossRefGoogle Scholar
Krapivina, E. N. & Lyubimova, T. P. 2000 Nonlinear regimes of convection of an elasticoviscous fluid in a closed cavity heated from below. Fluid Dyn. 35, 473478.CrossRefGoogle Scholar
Ladyzhenskaya, O. A. 1969 The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach.Google Scholar
Lappa, M. 1997 Strategies for parallelizing the three-dimensional Navier–Stokes equations on the Cray T3E. In Science and Supercomputing at CINECA (ed. Voli, M.), vol. 11, pp. 326340. CINECA.Google Scholar
Lappa, M. 2009 Thermal Convection: Patterns, Evolution and Stability. John Wiley & Sons.CrossRefGoogle Scholar
Lappa, M. 2011 Some considerations about the symmetry and evolution of chaotic Rayleigh–Bénard convection: the flywheel mechanism and the ‘wind’ of turbulence. C. R. Méc. 339, 563572.CrossRefGoogle Scholar
Lappa, M. 2012 Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons.CrossRefGoogle Scholar
Lappa, M. 2013 a Assessment of the role of axial vorticity in the formation of particle accumulation structures (PAS) in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows. Phys. Fluids 25 (1), 012101.CrossRefGoogle Scholar
Lappa, M. 2013 b On the variety of particle accumulation structures under the effect of g-jitters. J. Fluid Mech. 726, 160195.CrossRefGoogle Scholar
Lappa, M. 2019 a On the nature of fluid-dynamics. In Understanding the Nature of Science (ed. Lindholm, P.), Science, Evolution and Creationism, BISAC: SCI034000, chap. 1, pp. 164. Nova Science Publishers Inc.Google Scholar
Lappa, M. 2019 b Convective effects and traveling waves in transparent oxide materials processed with the floating zone technique. In Recent Studies in Materials Science (ed. Lind, P. R.), Materials Science and Technologies, chap. 2, pp. 97150. Nova Science Publishers Inc.Google Scholar
Lappa, M. & Ferialdi, H. 2017 On the oscillatory hydrodynamic instability of gravitational thermal flows of liquid metals in variable cross-section containers. Phys. Fluids 29 (6), 064106.CrossRefGoogle Scholar
Lappa, M. & Ferialdi, H. 2018 a Multiple solutions, oscillons and strange attractors in thermoviscoelastic marangoni convection. Phys. Fluids 30 (10), 104104.CrossRefGoogle Scholar
Lappa, M. & Ferialdi, H. 2018 b Gravitational thermal flows of liquid metals in 3D variable cross-section containers: Transition from low-dimensional to high-dimensional chaos. Chaos 28, 093114.CrossRefGoogle ScholarPubMed
Lappa, M., Savino, R. & Monti, R. 2000 Influence of buoyancy forces on Marangoni flow instabilities in liquid bridges. Intl J. Numer. Meth. Heat Fluid Flow 10 (7), 721749.CrossRefGoogle Scholar
Lappa, M., Yasuhiro, S. & Imaishi, N. 2003 3D numerical simulation of on ground Marangoni flow instabilities in liquid bridges of low Prandtl number fluid. Intl J. Numer. Meth. Heat Fluid Flow 13 (3), 309340.CrossRefGoogle Scholar
Larson, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31, 213263.CrossRefGoogle Scholar
Larson, R. G., Shaqfeh, E. S. G. & Muller, S. J. 1990 A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218, 573600.CrossRefGoogle Scholar
Lebon, G., Parmentier, P., Teller, O. & Dauby, P. C. 1994 Bénard–Marangoni instability in a viscoelastic Jeffreys fluid layer. Rheol. Acta 33, 257266.CrossRefGoogle Scholar
Leong, S. S. 2002 Numerical study of Rayleigh–Bénard convection in a cylinder. Numer. Heat Transfer A 41, 673683.CrossRefGoogle Scholar
Li, Z. & Khayat, R. E. 2005 Finite-amplitude Rayleigh–Bénard convection and pattern selection for viscoelastic fluids. J. Fluid Mech. 529, 221251.CrossRefGoogle Scholar
Lyubimov, D. V., Kovalevskaya, K. V. & Lyubimova, T. P. 2011 Bifurcations in the problem of thermal convection of viscoelastic fluid in a closed cavity with free boundaries heated from below. Appl. Nonlinear Dyn. 19, 1625.Google Scholar
Lyubimov, D. V., Kovalevskaya, K. V. & Lyubimova, T. P. 2012 Bifurcation analysis of a viscoelastic fluid heated from below. Commun. Nonlinear Sci. Numer. Simul. 17, 35213532.CrossRefGoogle Scholar
Martínez-Mardones, J. & Pérez-Garcíıa, C. 1990 Linear instability in viscoelastic fluid convection. J. Phys.: Condens. Matter 2, 12811290.Google Scholar
Martínez-Mardones, J. & Pérez-Garcíıa, C. 1992 Bifurcation analysis and amplitude equations for viscoelastic convective fluids. Il Nuovo Cimento 14 (9), 961975.CrossRefGoogle Scholar
Martínez-Mardones, J., Tienmann, R., Walgraef, D. & Zeller, W. 1996 Amplitude equations and pattern selection in viscoelastic convection. Phys. Rev. E 54, 14781488.CrossRefGoogle ScholarPubMed
Melnikov, D. E., Shevtsova, V. M. & Legros, J. C. 2005 Route to aperiodicity followed by high Prandtl-number liquid bridge. 1-g case. Acta Astronaut. 56 (6), 601611.CrossRefGoogle Scholar
Morozov, A. N. & van Saarloos, W. 2005 Subcritical finite-amplitude solutions for plane Couette flow of viscoelastic fluids. Phys. Rev. Lett. 95, 024501.CrossRefGoogle ScholarPubMed
Moukalled, F., Mangani, L. & Darwish, M. 2016 The Finite Volume Method in Computational Fluid Dynamics—An Advanced Introduction with Open-FOAM and Matlab. Springer International Publishing.CrossRefGoogle Scholar
Muller, S. J., Shaqfeh, E. S. G. & Larson, R. G. 1993 Experimental study of the onset of oscillatory instability in viscoelastic Taylor–Couette flow. J. Non-Newtonian Fluid Mech. 46, 315330.CrossRefGoogle Scholar
Neumann, G. 1990 Three-dimensional numerical simulation of buoyancy driven convection in vertical cylinders heated from below. J. Fluid Mech. 214, 559578.CrossRefGoogle Scholar
Northey, P. J., Armstrong, R. C. & Brown, R. A. 1992 Finite-amplitude time-periodic states in viscoelastic Taylor–Couette flow described by the UCM model. J. Non-Newtonian Fluid Mech. 42, 117139.CrossRefGoogle Scholar
Owens, R. G. & Phillips, T. N. 2002 Computational Rheology. Imperial College Press.CrossRefGoogle Scholar
Park, H. M. 2018 Peculiarity in the Rayleigh–Bénard convection of viscoelastic fluids. Intl J. Therm. Sci. 132, 3441.CrossRefGoogle Scholar
Park, H. M. & Lee, H. S. 1996 Hopf bifurcations of viscoelastic fluids heated from below. J. Non-Newtonian Fluid Mech. 66, 134.CrossRefGoogle Scholar
Park, H. M. & Lim, J. Y. 2010 A new numerical algorithm for viscoelastic fluid flow: the grid by-grid inversion method. J. Non-Newtonian Fluid Mech. 165, 238246.CrossRefGoogle Scholar
Park, H. M. & Park, K. S. 2004 Rayleigh–Bénard convection of viscoelastic fluids in arbitrary finite domains. Intl J. Heat Mass Transfer 47, 22512259.CrossRefGoogle Scholar
Park, H. M. & Ryu, D. H. 2001 b Hopf bifurcation in thermal convection of viscoelastic fluids within finite domains. J. Non-Newtonian Fluid Mech. 101, 119.CrossRefGoogle Scholar
Park, H. M. & Ryu, D. H. 2002 Nonlinear convective stability problems of viscoelastic fluids in finite domains. Rheol. Acta 41, 427440.Google Scholar
Park, H. M. & Ryu, H. M. 2001 a Rayleigh–Bénard convection of viscoelastic fluids in finite domains. J. Non-Newtonian Fluid Mech. 98, 169184.CrossRefGoogle Scholar
Park, H. M., Shin, K. S. & Sohn, H. S. 2009 Numerical simulation of thermal convection of viscoelastic fluids using the grid-by-grid inversion method. Intl J. Heat Mass Transfer 52, 48514861.CrossRefGoogle Scholar
Parmentier, P., Lebon, G. & Regnier, V. 2000 Weakly nonlinear analysis of Bénard–Marangoni instability in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 89, 6395.CrossRefGoogle Scholar
Paulo, G. S., Oishi, C. M., Tomé, M. F., Alves, M. A. & Pinho, F. T. 2014 Numerical solution of the FENE-CR model in complex flows. J. Non-Newtonian Fluid Mech. 204, 5061.CrossRefGoogle Scholar
Petersson, N. A. 2001 Stability of pressure boundary conditions for Stokes and Navier–Stokes equations. J. Comput. Phys. 172, 4070.CrossRefGoogle Scholar
Petrie, C. J. S. & Denn, M. M. 1976 Instabilities in polymer processing. AIChE J. 22 (2), 209236.CrossRefGoogle Scholar
Rauwendaal, C. 2013 Polymer Extrusion, 5th edn. Elsevier Science.Google Scholar
Renardy, M. 1999 High Weissenberg number asymptotics and corner singularities in viscoelastic flows. In IUTAM Symposium on Non-linear Singularities in Deformation and Flow (ed. Durban, D. & Pearson, J. R. A.). Springer.Google Scholar
Revuz, D. & Yor, M. 1994 Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 293. Springer.Google Scholar
Rhie, C. M. & Chow, W. L. 1983 Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 15251532.CrossRefGoogle Scholar
Rocha, G. N., Poole, R. J., Alves, M. A. & Oliveira, P. J. 2009 On extensibility effects in the cross-slot flow bifurcation. J. Non-Newtonian Fluid Mech. 156 (1–2), 5869.CrossRefGoogle Scholar
Rosenblat, S. 1986 Thermal convection of a viscoelastic fluid. J. Non-Newtonian Fluid Mech. 21, 201223.CrossRefGoogle Scholar
Rotheiser, J. 1999 Joining of Plastics. Hanser.Google Scholar
Schwabe, D. & Scharmann, A. 1983 Oscillatory thermocapillary convection in floating zones under normal- and micro-gravity. Adv. Space Res. 3 (5), 8992.CrossRefGoogle Scholar
Shevtsova, V. M., Melnikov, D. E. & Legros, J. C. 2001 Three-dimensional simulations of hydrodynamical instability in liquid bridges: Influence of temperature-dependent viscosity. Phys. Fluids 13, 28512865.CrossRefGoogle Scholar
Shevtsova, V. M., Melnikov, D. E. & Legros, J. C. 2003 Multistability of oscillatory thermocapillary convection in a liquid bridge. Phys. Rev. E 68 (6), 066311.CrossRefGoogle Scholar
Shevtsova, V., Melnikov, D. E. & Nepomnyashchy, A. 2009 New flow regimes generated by mode coupling in buoyant-thermocapillary convection. Phys. Rev. Lett. 102, 134503.CrossRefGoogle ScholarPubMed
Shevtsova, V., Mialdun, A., Kawamura, H., Ueno, I., Nishino, K. & Lappa, M. 2011 Onset of hydrothermal instability in liquid bridge. Experimental benchmark. Fluid Dyn. Mater. Process. 7 (1), 128.Google Scholar
Siggers, J. H. 2003 Dynamics of target patterns in low-Prandtl-number convection. J. Fluid Mech. 475, 357375.CrossRefGoogle Scholar
Siginer, D. 2014 Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids, Springer Briefs in Thermal Engineering and Applied Science. Springer International Publishing.CrossRefGoogle Scholar
Sokolov, M. & Tanner, R. I. 1972 Convective stability of a general viscoelastic fluid heated from below. Phys. Fluids 15, 534539.CrossRefGoogle Scholar
Sun, C., Xia, K. Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.CrossRefGoogle Scholar
Touihri, R., Ben Hadid, H. & Henry, D. 1999 On the onset of convective instabilities in cylindrical cavities heated from below. I. Pure thermal case. Phys. Fluids 11 (8), 20782088.CrossRefGoogle Scholar
Troughton, M. J. 2008 Handbook of Plastics Joining: A Practical Guide. William Andrew.Google Scholar
Tuckerman, L. S. & Barkley, D. 1988 Global bifurcation to travelling waves in axisymmetric convection. Phys. Rev. Lett. 61, 408.411.CrossRefGoogle Scholar
Vest, C. M. & Arpaci, V. S. 1969 Overstability of a viscoelastic fluid layer heated from below. J. Fluid Mech. 36, 613623.CrossRefGoogle Scholar
Wagner, C., Friedrich, R. & Narayanan, R. 1994 Comments on the numerical investigation of Rayleigh and Marangoni convection in a vertical cylinder. Phys. Fluids 6, 14251433.CrossRefGoogle Scholar
Wanschura, M., Kuhlmann, H. C. & Rath, H. J. 1996 Three-dimensional instability of axisymmetric buoyant convection in cylinders heated from below. J. Fluid Mech. 326, 399415.CrossRefGoogle Scholar
Xi, H. D., Lam, S. & Xia, K. Q. 2004 From laminar plumes to organized flows: The onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xie, Y. C., Cheng, B. Y. C., Hu, Y. B. & Xia, K. Q. 2019 Universal fluctuations in the bulk of Rayleigh–Bénard turbulence. J. Fluid Mech. 878, R1.CrossRefGoogle Scholar
Yamaguchi, Y., Chang, C. J. & Brown, R. A. 1984 Multiple byoyancy-driven flows in a vertical cylinder heated from below. Phil. Trans. R. Soc. Lond. A 312 (1523), 519552.Google Scholar