Published online by Cambridge University Press: 09 March 2022
The aim of the present study is to investigate the linear and nonlinear wave dynamics of a falling incompressible viscous fluid when the fluid undergoes an effect of odd viscosity. In fact, such an effect arises in classical fluids when the time-reversal symmetry is broken. The motivation to study this dynamics was raised by recent studies (Ganeshan & Abanov, Phys. Rev. Fluids, vol. 2, 2017, p. 094101; Kirkinis & Andreev, J. Fluid Mech., vol. 878, 2019, pp. 169–189) where the odd viscosity coefficient suppresses thermocapillary instability. Here, we explore the linear surface wave and shear wave dynamics for the isothermal case by solving the Orr–Sommerfeld eigenvalue problem numerically with the aid of the Chebyshev spectral collocation method. It is found that surface and shear instabilities can be weakened by the odd viscosity coefficient. Furthermore, the growth rate of the wavepacket corresponding to the linear spatio-temporal response is reduced as long as the odd viscosity coefficient increases. In addition, a coupled system of a two-equation model is derived in terms of the fluid layer thickness $h(x,t)$ and the flow rate
$q(x,t)$. The nonlinear travelling wave solution of the two-equation model reveals the attenuation of maximum amplitude and speed in the presence of an odd viscosity coefficient, which ensures the delay of transition from the primary parallel flow with a flat surface to secondary flow generated through the nonlinear wave interactions. This physical phenomenon is further corroborated by performing a nonlinear spatio-temporal simulation when a harmonic forcing is applied at the inlet.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.