Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T23:04:56.906Z Has data issue: false hasContentIssue false

A scale-wise analysis of intermittent momentum transport in dense canopy flows

Published online by Cambridge University Press:  27 May 2022

Subharthi Chowdhuri*
Affiliation:
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Dr. Homi Bhaba Road, Pune 411008, India
Khaled Ghannam
Affiliation:
Atmospheric and Oceanic Sciences, Cooperative Institute for Modeling the Earth System, Princeton University, Princeton, NJ 08544, USA
Tirtha Banerjee
Affiliation:
Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
*
Email address for correspondence: subharthi.cat@tropmet.res.in

Abstract

We investigate the intermittent dynamics of momentum transport and its underlying time scales in the near-wall region of the neutrally stratified atmospheric boundary layer in the presence of a vegetation canopy. This is achieved through an empirical analysis of the persistence time scales (periods between successive zero-crossings) of momentum flux events, and their connection to the ejection–sweep cycle. Using high-frequency measurements from the GoAmazon campaign, spanning multiple heights within and above a dense canopy, the analysis suggests that, when the persistence time scales ($t_p$) of momentum flux events from four different quadrants are separately normalized by $\varGamma _{w}$ (integral time scale of the vertical velocity), their distributions $P(t_p/\varGamma _{w})$ remain height-invariant. This result points to a persistent memory imposed by canopy-induced coherent structures, and to their role as an efficient momentum-transporting mechanism between the canopy airspace and the region immediately above. Moreover, $P(t_p/\varGamma _{w})$ exhibits a power-law scaling at times $t_{p}<\varGamma _{w}$, with an exponential tail appearing for $t_{p} \geq \varGamma _{w}$. By separating the flux events based on $t_p$, we discover that around 80 % of the momentum is transported through the long-lived events ($t_{p} \geq \varGamma _{w}$) at heights immediately above the canopy, while the short-lived ones ($t_{p} < \varGamma _{w}$) only contribute marginally ($\approx 20\,\%$). To explain the role of instantaneous flux amplitudes in momentum transport, we compare the measurements with newly developed surrogate data and establish that the range of time scales involved with amplitude variations in the fluxes tends to increase as one transitions from within to above the canopy.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Baars, W.J., Talluru, K.M., Hutchins, N. & Marusic, I. 2015 Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56 (10), 188.CrossRefGoogle Scholar
Bailey, B.N. & Stoll, R. 2016 The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech. 789, 425460.CrossRefGoogle Scholar
Banerjee, T., De Roo, F. & Mauder, M. 2017 Connecting the failure of K theory inside and above vegetation canopies and ejection–sweep cycles by a large-eddy simulation. J. Appl. Meteorol. Climatol. 56 (12), 31193131.CrossRefGoogle Scholar
Banerjee, T., Vercauteren, N., Muste, M. & Yang, D. 2018 Coherent structures in wind shear induced wave–turbulence–vegetation interaction in water bodies. Agric. Forest Meteorol. 255, 5767.CrossRefGoogle Scholar
Benavides, S.J., Deal, E., Rushlow, M., Venditti, J.G., Zhang, Q., Kamrin, K. & Perron, J.T. 2022 The impact of intermittency on bed load sediment transport. Geophys. Res. Lett. 49, e2021GL096088.CrossRefGoogle Scholar
Benzi, R., Castaldi, I., Toschi, F. & Trampert, J. 2022 Self-similar properties of avalanche statistics in a simple turbulent model. Phil. Trans. R. Soc. A 380 (2218), 20210074.CrossRefGoogle Scholar
Bonan, G.B., Patton, E.G., Harman, I.N., Oleson, K.W., Finnigan, J.J., Lu, Y. & Burakowski, E.A. 2018 Modeling canopy-induced turbulence in the earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev. 11 (4), 14671496.CrossRefGoogle Scholar
Bradshaw, P. 1967 ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30 (2), 241258.CrossRefGoogle Scholar
Bray, A.J., Majumdar, S.N. & Schehr, G. 2013 Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 62 (3), 225361.CrossRefGoogle Scholar
Brunet, Y. 2020 Turbulent flow in plant canopies: historical perspective and overview. Boundary-Layer Meteorol. 177 (2), 315364.CrossRefGoogle Scholar
Castellanos, O., López, J.M., Senties, J.M. & Anabitarte, E. 2013 Intermittency, avalanche statistics, and long-term correlations in a turbulent plasma. J. Stat. Mech. 2013 (04), P04022.CrossRefGoogle Scholar
Cava, D. & Katul, G.G. 2009 The effects of thermal stratification on clustering properties of canopy turbulence. Boundary-Layer Meteorol. 130 (3), 307325.CrossRefGoogle Scholar
Cava, D., Katul, G.G., Molini, A. & Elefante, C. 2012 The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence. J. Geophys. Res. Atmos. 117 (D1), D01104.CrossRefGoogle Scholar
Chamecki, M. 2013 Persistence of velocity fluctuations in non-Gaussian turbulence within and above plant canopies. Phys. Fluids 25 (11), 115110.CrossRefGoogle Scholar
Chamecki, M., Freire, L.S., Dias, N.L., Chen, B., Dias-Junior, C.Q., Toledo M, L.A., Sörgel, M., Tsokankunku, A. & Araújo, A.C. 2020 Effects of vegetation and topography on the boundary layer structure above the amazon forest. J. Atmos. Sci. 77 (8), 29412957.CrossRefGoogle Scholar
Chowdhuri, S., Iacobello, G. & Banerjee, T. 2021 Visibility network analysis of large-scale intermittency in convective surface layer turbulence. J. Fluid Mech. 925, A38.CrossRefGoogle Scholar
Chowdhuri, S., Kalmár-Nagy, T. & Banerjee, T. 2020 a Persistence analysis of velocity and temperature fluctuations in convective surface layer turbulence. Phys. Fluids 32 (7), 076601.CrossRefGoogle Scholar
Chowdhuri, S., Kumar, S. & Banerjee, T. 2020 b Revisiting the role of intermittent heat transport towards Reynolds stress anisotropy in convective turbulence. J. Fluid Mech. 899, A26.CrossRefGoogle Scholar
Chowdhuri, S., Prabhakaran, T. & Banerjee, T. 2020 c Persistence behavior of heat and momentum fluxes in convective surface layer turbulence. Phys. Fluids 32 (11), 115107.CrossRefGoogle Scholar
Clauset, A., Shalizi, C.R. & Newman, M.E.J. 2009 Power-law distributions in empirical data. SIAM Rev. 51 (4), 661703.CrossRefGoogle Scholar
Dias-Junior, C.Q., Marques Filho, E.P. & Sa, L.D.A. 2015 A large eddy simulation model applied to analyze the turbulent flow above amazon forest. J. Wind Engng Ind. Aerodyn. 147, 143153.CrossRefGoogle Scholar
Dupont, S. & Patton, E.G. 2012 Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: the CHATS experiment. Agric. Forest Meteorol. 157, 1129.CrossRefGoogle Scholar
Dwyer, M.J., Patton, E.G. & Shaw, R.H. 1997 Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84 (1), 2343.CrossRefGoogle Scholar
Everard, K.A., Katul, G.G., Lawrence, G.A., Christen, A. & Parlange, M.B. 2021 Sweeping effects modify Taylor's frozen turbulence hypothesis for scalars in the roughness sublayer. Geophys. Res. Lett. 48 (22), e2021GL093746.CrossRefGoogle Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519571.CrossRefGoogle Scholar
Finnigan, J.J., Shaw, R.H. & Patton, E.G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387424.CrossRefGoogle Scholar
Fiscaletti, D., De Kat, R. & Ganapathisubramani, B. 2018 Spatial–spectral characteristics of momentum transport in a turbulent boundary layer. J. Fluid Mech. 836, 599634.CrossRefGoogle Scholar
Freire, L.S., Gerken, T., Ruiz-Plancarte, J., Wei, D., Fuentes, J.D., Katul, G.G., Dias, N.L., Acevedo, O.C. & Chamecki, M. 2017 Turbulent mixing and removal of ozone within an Amazon rainforest canopy. J. Geophys. Res. Atmos. 122 (5), 27912811.CrossRefGoogle Scholar
Frisch, U. & Kolmogorov, A.N. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Fuentes, J.D., et al. 2016 Linking meteorology, turbulence, and air chemistry in the Amazon rain forest. Bull. Am. Meteorol. Soc. 97 (12), 23292342.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E.K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Gao, W., Shaw, R.H. & Paw, K.T.U. 1992 Conditional analysis of temperature and humidity microfronts and ejection/sweep motions within and above a deciduous forest. Boundary-Layer Meteorol. 59 (1–2), 3557.CrossRefGoogle Scholar
Gerken, T., et al. 2018 Investigating the mechanisms responsible for the lack of surface energy balance closure in a central Amazonian tropical rainforest. Agric. Forest Meteorol. 255, 92103.CrossRefGoogle Scholar
Ghannam, K., Katul, G.G., Bou-Zeid, E., Gerken, T. & Chamecki, M. 2018 Scaling and similarity of the anisotropic coherent eddies in near-surface atmospheric turbulence. J. Atmos. Sci. 75 (3), 943964.CrossRefGoogle Scholar
Ghannam, K., Nakai, T., Paschalis, A., Oishi, C.A., Kotani, A., Igarashi, Y., Kumagai, T. & Katul, G.G. 2016 Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res. 52 (2), 14271445.CrossRefGoogle Scholar
Ghannam, K., Poggi, D., Bou-Zeid, E. & Katul, G.G. 2020 Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophys. Res. Lett. 47 (9), e2020GL087486.CrossRefGoogle Scholar
Ghannam, K., Poggi, D., Porporato, A. & Katul, G.G. 2015 The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorol. 157 (3), 447460.CrossRefGoogle Scholar
Gomit, G., De Kat, R. & Ganapathisubramani, B. 2018 Structure of high and low shear-stress events in a turbulent boundary layer. Phys. Rev. Fluids 3 (1), 014609.CrossRefGoogle Scholar
Grebenkov, D.S., Holcman, D. & Metzler, R. 2020 Preface: new trends in first-passage methods and applications in the life sciences and engineering. J. Phys. A 53 (19), 190301.CrossRefGoogle Scholar
Harman, I.N. & Finnigan, J.J. 2007 A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol. 123 (2), 339363.CrossRefGoogle Scholar
Hommema, S.E. & Adrian, R.J. 2003 Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol. 106 (1), 147170.CrossRefGoogle Scholar
Huang, K.Y., Katul, G.G. & Hultmark, M. 2021 Velocity and temperature dissimilarity in the surface layer uncovered by the telegraph approximation. Boundary-Layer Meteorol. 180, 385405.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Kailasnath, P. & Sreenivasan, K.R. 1993 Zero crossings of velocity fluctuations in turbulent boundary layers. Phys. Fluids 5 (11), 28792885.CrossRefGoogle Scholar
Kaimal, J.C. & Finnigan, J.J. 1994 Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press.CrossRefGoogle Scholar
Katul, G.G., Albertson, J., Parlange, M., Chu, C.R. & Stricker, H. 1994 Conditional sampling, bursting, and the intermittent structure of sensible heat flux. J. Geophys. Res. Atmos. 99 (D11), 2286922876.CrossRefGoogle Scholar
Keylock, C.J., Ghisalberti, M., Katul, G.G. & Nepf, H.M. 2020 A joint velocity-intermittency analysis reveals similarity in the vertical structure of atmospheric and hydrospheric canopy turbulence. Environ. Fluid Mech. 20 (1), 77101.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kraichnan, R.H. 1990 Models of intermittency in hydrodynamic turbulence. Phys. Rev. Lett. 65 (5), 575.CrossRefGoogle ScholarPubMed
Kumar, P., Korkolis, E., Benzi, R., Denisov, D., Niemeijer, A., Schall, P., Toschi, F. & Trampert, J. 2020 On interevent time distributions of avalanche dynamics. Sci. Rep. 10 (1), 626.CrossRefGoogle ScholarPubMed
Laskari, A., De Kat, R., Hearst, R.J. & Ganapathisubramani, B. 2018 Time evolution of uniform momentum zones in a turbulent boundary layer. J. Fluid Mech. 842, 554590.CrossRefGoogle Scholar
Laurson, L., Illa, X. & Alava, M.J. 2009 The effect of thresholding on temporal avalanche statistics. J. Stat. Mech. 2009 (01), P01019.CrossRefGoogle Scholar
Lee, Y.H. 2011 Intermittency of turbulence within open canopies. Asia Pac. J. Atmos. Sci. 47 (2), 137149.CrossRefGoogle Scholar
Li, D. & Bou-Zeid, E. 2011 Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 140 (2), 243262.CrossRefGoogle Scholar
Li, D., Katul, G.G. & Bou-Zeid, E. 2012 Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys. Fluids 24 (10), 105105.CrossRefGoogle Scholar
Li, D., Liu, M. & Huai, W. 2022 Modeling transverse momentum exchange in partially vegetated flow. Phys. Fluids 34 (2), 025124.CrossRefGoogle Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.CrossRefGoogle Scholar
Mahrt, L. & Paumier, J. 1984 Heat transport in the atmospheric boundary layer. J. Atmos. Sci. 41 (21), 30613075.2.0.CO;2>CrossRefGoogle Scholar
Majumdar, S.N. 1999 Persistence in nonequilibrium systems. Curr. Sci., 370375.Google Scholar
Manshour, P., Anvari, M., Reinke, N., Sahimi, M. & Tabar, M. 2016 Interoccurrence time statistics in fully-developed turbulence. Sci. Rep. 6 (1), 27452.CrossRefGoogle ScholarPubMed
Narasimha, R., Kumar, S.R., Prabhu, A. & Kailas, S.V. 2007 Turbulent flux events in a nearly neutral atmospheric boundary layer. Phil. Trans. R. Soc. A 365 (1852), 841858.CrossRefGoogle Scholar
Pan, Y. & Patton, E.G. 2017 On determining stationary periods within time series. J. Atmos. Ocean Technol. 34 (10), 22132232.CrossRefGoogle Scholar
Patton, E.G., Sullivan, P.P., Shaw, R.H., Finnigan, J.J. & Weil, J.C. 2016 Atmospheric stability influences on coupled boundary layer and canopy turbulence. J. Atmos. Sci. 73 (4), 16211647.CrossRefGoogle Scholar
Perret, L. & Patton, E.G. 2021 Stability influences on interscale transport of turbulent kinetic energy and Reynolds shear stress in atmospheric boundary layers interacting with a tall vegetation canopy. J. Fluid Mech. 921, A14.CrossRefGoogle Scholar
Platt, N., Spiegel, E.A. & Tresser, C. 1993 On–off intermittency: a mechanism for bursting. Phys. Rev. Lett. 70 (3), 279282.CrossRefGoogle ScholarPubMed
Poggi, D. & Katul, G. 2009 Flume experiments on intermittency and zero-crossing properties of canopy turbulence. Phys. Fluids 21 (6), 065103.CrossRefGoogle Scholar
Poggi, D., Katul, G.G. & Albertson, J.D. 2004 a Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol. 111 (3), 589614.CrossRefGoogle Scholar
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D. & Katul, G.G. 2004 b The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3), 565587.CrossRefGoogle Scholar
Raupach, M.R. & Thom, A.S. 1981 Turbulence in and above plant canopies. Annu. Rev. Fluid Mech. 13 (1), 97129.CrossRefGoogle Scholar
Shannon, C.E. 1948 A mathematical theory of communication. Bell Syst. Technol. J. 27 (3), 379423.CrossRefGoogle Scholar
Sreenivasan, K.R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.CrossRefGoogle Scholar
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.CrossRefGoogle Scholar
Sreenivasan, K.R. & Bershadskii, A. 2006 Clustering properties in turbulent signals. J. Stat. Phys. 125 (5), 11411153.CrossRefGoogle Scholar
Su, H.B., Shaw, R.H., Paw, K.T., Moeng, C.H. & Sullivan, P.P. 1998 Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol. 88 (3), 363397.CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.CrossRefGoogle Scholar
Thomas, C. & Foken, T. 2007 Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol. 123 (2), 317337.CrossRefGoogle Scholar
Townsend, A.A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1), 97120.CrossRefGoogle Scholar
Vickers, D. & Mahrt, L. 1997 Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean Technol. 14 (3), 512526.2.0.CO;2>CrossRefGoogle Scholar
Wallace, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.CrossRefGoogle Scholar
Watanabe, T. 2004 Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol. 112 (2), 307341.CrossRefGoogle Scholar
Wyngaard, J.C. & Coté, O.R. 1972 Cospectral similarity in the atmospheric surface layer. Q. J. R. Meteorol. Soc. 98 (417), 590603.CrossRefGoogle Scholar
Supplementary material: File

Chowdhuri et al. supplementary material

Chowdhuri et al. supplementary material

Download Chowdhuri et al. supplementary material(File)
File 2.1 MB