Published online by Cambridge University Press: 23 June 2015
The interaction between a steady current and propagating surface waves is investigated by means of a perturbation approach, which assumes small values of the wave steepness and considers current velocities of the same order of magnitude as the amplitude of the velocity oscillations induced by wave propagation. The problems, which are obtained at the different orders of approximation, are characterized by a further parameter which is the ratio between the thickness of the bottom boundary layer and the length of the waves and turns out to be even smaller than the wave steepness. However, the solution is determined from the bottom up to the free surface, without the need to split the fluid domain into a core region and viscous boundary layers. Moreover, the procedure, which is employed to solve the problems at the different orders of approximation, reduces them to one-dimensional problems. Therefore, the solution for arbitrary angles between the direction of the steady current and that of wave propagation can be easily obtained. The theoretical results are compared with experimental measurements; the fair agreement found between the model results and the laboratory measurements supports the model findings.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.