Published online by Cambridge University Press: 25 May 1997
In this paper we present the results from numerical calculations, based upon the Navier–Stokes equations at relatively high Reynolds number, of the formation of a vortex ring when fluid is ejected from a circular tube. Our results are compared with the experiments of Didden (1979), and the inviscid flow calculations of Nitsche & Krasny (1994). Reasonable agreement is achieved except for the rate of shedding of circulation during the initial stages of ring formation. The theoretically predicted rate of shedding is substantially higher than that predicted by Didden. By contrast the inviscid theory predicts an anomalously high rate of initial shedding. We offer explanations for both of these apparent discrepancies.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.