Published online by Cambridge University Press: 29 March 2006
The stability of the conduction regime of natural convection of a fluid contained in a narrow rotating annulus with a heated inner wall has been investigated according to the linear theory. The results include computations for Prandtl numbers P = 0, 0·72 and 6·7 over a large range of the rotational parameters. For low rotation rates the instability sets in as multicellular convection with the cell axes horizontal in the absence of rotation but tilting monotonically towards the vertical as the rotation rate is in creased. Two other types of instability were found at high rotation rates. For large Froude numbers the unstable thermal stratification leads to a Bénard type of convection with vertically oriented rolls. For large Taylor numbers, through a mainly hydrodynamic mechanism, a nearly vertically oriented cellular structure develops in the flow which is destabilized as a result of rotation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.