Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-16T06:37:17.497Z Has data issue: false hasContentIssue false

Stabilizing action of pressure in homogeneous compressible shear flows: effect of Mach number and perturbation obliqueness

Published online by Cambridge University Press:  12 November 2014

G. Kumar
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
Rebecca L. Bertsch*
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
Sharath S. Girimaji
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
*
Email address for correspondence: r_bertsch@tamu.edu

Abstract

Compressibility exerts a stabilizing influence on a variety of high-speed shear flows such as turbulent mixing layers, transitioning boundary layers and homogeneously sheared turbulence. An important stabilizing feature that is common amongst all shear flows is the velocity–pressure interaction dynamics. In this study, velocity–pressure interactions of individual perturbation or fluctuation modes are investigated using direct numerical simulations and linear analysis in high-Mach-number homogeneous shear flow. For a given perturbation wave mode, the action of pressure is shown to depend on two important factors: the orientation of the perturbation wavevector with respect to the shear plane and the Mach number. It is shown that the streamwise perturbation wave mode rapidly develops a high level of kinetic energy but is self-limiting owing to the action of pressure. On the other hand, the energy of spanwise perturbation wave modes grows unaffected by pressure or Mach number. Oblique modes combine spanwise and streamwise characteristics and are shown to be chiefly responsible for stabilizing effects seen in shear flows. Three regimes of obliqueness of different linear stability characteristics are identified. The critical role of perturbation obliqueness on stabilization is established.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N. A. & Sandham, N. A. 1993 Numerical simulation of boundary-layer at Mach two. Appl. Sci. Res. 51, 371375.Google Scholar
Baron, F.1982 Macro-simulation tridimensionnelle d’écoulements turbulents cisaillés. PhD thesis, Université Pierre et Marie Curie, Paris.Google Scholar
Bertsch, R. L., Suman, S. & Girimaji, S. S. 2012 Rapid distortion analysis of high Mach number homogeneous shear flows: characterization of flow–thermodynamics interaction regimes. Phys. Fluids 24, 125106.Google Scholar
Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, K. 1986 Spreading of two-stream supersonic turbulent mixing layers. Phys. Fluids 29 (5), 13451347.Google Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.CrossRefGoogle Scholar
Gerz, T., Schumann, U. & Elghobashi, S. E. 1989 Direct numerical simulation of stratified homogenous turbulent shear flows. J. Fluid Mech. 200, 563594.CrossRefGoogle Scholar
Goebel, S. G. & Dutton, J. C. 1991 Experimental study of compressible turbulent mixing layers. AIAA J. 29 (4), 538546.Google Scholar
Hall, J. L., Dimotakis, P. E. & Rosemann, H. 1993 Experiments in nonreacting compressible shear layers. AIAA J. 31 (12), 22472254.Google Scholar
Jackson, T. L. & Grosch, C. E. 1990 Absolute/convective instabilities and the convective Mach number in a compressible mixing layer. Phys. Fluids A 2, 949954.Google Scholar
Kerimo, J. & Girimaji, S. S. 2007 Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbul. 8 (46), 116.Google Scholar
Kourta, A. & Sauvage, R. 2002 Computation of supersonic mixing layers. Phys. Fluids 14 (11), 37903797.Google Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20, 657682.CrossRefGoogle Scholar
Kreuzinger, J. & Friedrich, R. 2002 DNS of homogeneous shear flow and data analysis for the development of a four-equation turbulence model. In High Performance Computing in Science and Engineering, Munich 2002 (ed. Wagner, S., Hanke, W., Bode, A. & Durst, F.), pp. 5969. Springer.Google Scholar
Kumar, G., Girimaji, S. S. & Kerimo, J. 2013 WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. J. Comput. Phys. 234, 499523.CrossRefGoogle Scholar
Lavin, T. A., Girimaji, S. S., Suman, S. & Yu, H. 2012 Flow–thermodynamics interactions in rapidly-sheared compressible turbulence. Theor. Comput. Fluid Dyn. 26 (6), 501522.Google Scholar
Lee, K.2008 Heat release effects on decaying homogeneous compressible turbulence. PhD thesis, Texas A&M University, College Station, TX.Google Scholar
Liao, W., Peng, Y. & Luo, L. 2009 Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Phys. Rev. E 80 (1), 127.CrossRefGoogle ScholarPubMed
Livescu, D. & Madnia, C. K. 2004 Small scale structure of homogeneous turbulent shear flow. Phys. Fluids 16, 28642876.Google Scholar
Luo, K. H. & Sandham, N. D. 1994 On the formation of small scales in a compressible mixing layer. In Direct and Large-Eddy Simulation I (ed. Voke, P. R., Kleiser, L. & Chollet, J.-P.), Fluid Mechanics and Its Applications, vol. 26, pp. 335346. Kluwer.Google Scholar
Mishra, A. A. & Girimaji, S. S. 2010 Pressure–strain correlation modeling: towards achieving consistency with rapid distortion theory. Flow Turbul. Combust. 85, 593619.Google Scholar
Mishra, A. A. & Girimaji, S. S. 2013 Intercomponent energy transfer in incompressible homogeneous turbulence: multi-point physics and amenability to one-point closures. J. Fluid Mech. 731, 639681.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315.Google Scholar
Samimy, M. & Elliot, G. S. 1990 Effects of compressibility on the characteristics of free shear layers. AIAA J. 28 (3), 439445.CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.Google Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.CrossRefGoogle Scholar
Schumann, U. 1985 Algorithms for Direct Numerical Simulation of Shear-Periodic Turbulence. Springer.Google Scholar
Simone, A., Coleman, G. N. & Cambon, C. 1997 The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech. 330, 307338.Google Scholar
Wang, T., Xiaotian, S. & Zhang, G. 2013 Visualization of large-scale structures in spatially developing compressible mixing layers. J. Vis. 16, 219227.CrossRefGoogle Scholar
Xu, K.1998 Gas-kinetic schemes for unsteady compressible flow simulations. Von Karman Institute for Fluid Dynamics Lecture Series 1998-03.Google Scholar
Xu, K. 2001 A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Gudonov method. J. Comput. Phys. 171, 289335.Google Scholar
Xu, K., Mao, M. & Tang, L. 2005 A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys. 203 (2), 405421.CrossRefGoogle Scholar
Yao, Y., Krishnan, L., Sandham, N. D. & Roberts, G. T. 2007 The effect of Mach number on unstable disturbances in shock/boundary layer interactions. Phys. Fluids 19, 054104.Google Scholar
Yu, H., Girimaji, S. S. & Luo, L. 2005 DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. J. Comput. Phys. 209 (2), 599616.Google Scholar