Published online by Cambridge University Press: 20 April 2006
Turbulent spots formed artificially in a Blasius boundary layer have been investigated over a finite width extending across the plane of symmetry of the spots. Hot wires were used to measure the local mean and fluctuating parts of the downstream and spanwise velocity components, and the third component was computed. The results are presented in contour diagrams, and are compared with previous published work.
The values of energy thickness in the spots are computed from the contours of downstream velocity. The spots are found to consist of an upper part containing most of the turbulence, moving over a lower layer whose contribution to the energy thickness is small. When, near the rear of the spot, the energy thickness decreases to the value in Blasius flow, the two parts recombine, and the flow slowly regains the Blasius velocity profile.
The spots grow by entrainment of laminar fluid, and the physical principles governing this process are discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.