Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-12T00:38:42.819Z Has data issue: false hasContentIssue false

Subcritical instability of finite circular Couette flow with stationary inner cylinder

Published online by Cambridge University Press:  18 March 2016

Juan M. Lopez*
Affiliation:
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
*
Email address for correspondence: juan.m.lopez@asu.edu

Abstract

The presence of endwalls in Taylor–Couette flows has far reaching effects, leading to dynamics that are qualitatively different from those associated with the idealized situation involving infinitely long cylinders. This is well known in the classical situation where the inner cylinder is rotating and the outer cylinder is stationary. The effects of endwalls in the centrifugally stable situation with stationary inner cylinder and rotating outer cylinder have not been previously considered in detail. The meridional flows induced by the endwalls lead to the formation of a thin sidewall boundary layer on the inner cylinder wall if the endwalls are rotating, or on the outer cylinder wall if they are stationary. At sufficiently high Reynolds numbers (non-dimensional rotation rate of the outer cylinder), the sidewall boundary layer has concentrated shear, the pressure gradient in the azimuthal direction (which is the streamwise direction for the boundary layer flow) is zero (the flow is axisymmetric) and the boundary layer thickness is constant. At a critical Reynolds number, the sidewall boundary layer loses stability at a subcritical Hopf bifurcation, breaking the axisymmetry of the basic state flow, and for Reynolds numbers slightly above critical, the basic state is unstable to a packet of Hopf modes with azimuthal wavenumbers clustered about the critical wavenumber. The early time evolution of the critical Hopf mode is a rotating wave whose behaviour is analogous to a Tollmien–Schlichting wave. As the Hopf modes grow with time, nonlinear interactions lead to modulations in the waves, localization of the disturbances and the evolution of concentrated streamwise vortical streaks which become very intense via vortex stretching.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, K. & Hof, B. 2013 High-precision Taylor–Couette experiment to study subcritical transitions and the role of boundary conditions and size effects. Rev. Sci. Inst. 84, 065106.CrossRefGoogle ScholarPubMed
Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108, 124501.CrossRefGoogle ScholarPubMed
Avila, M., Grimes, M., Lopez, J. M. & Marques, F. 2008 Global endwall effects on centrifugally stable flows. Phys. Fluids 20, 104104.CrossRefGoogle Scholar
Bayly, B. J., Orszag, S. A. & Herbert, T. 1988 Instability mechanisms in shear-flow transition. Annu. Rev. Fluid Mech. 20, 359391.CrossRefGoogle Scholar
Benjamin, T. B. 1978a Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. Proc. R. Soc. Lond. A 359, 126.Google Scholar
Benjamin, T. B. 1978b Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301(R).CrossRefGoogle ScholarPubMed
Burin, M. J. & Czarnocki, C. J. 2012 Subcritical transition and spiral turbulence in circular Couette flow. J. Fluid Mech. 709, 106122.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.CrossRefGoogle Scholar
Do, Y., Lopez, J. M. & Marques, F. 2010 Optimal harmonic response in a confined Bödewadt boundary layer flow. Phys. Rev. E 82, 036301.CrossRefGoogle Scholar
Edlund, E. M. & Ji, H. 2015 Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows. Phys. Rev. E 92, 043005.CrossRefGoogle ScholarPubMed
Esser, A. & Grossmann, S. 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141819.CrossRefGoogle Scholar
Hugues, S. & Randriamampianina, A. 1998 An improved projection scheme applied to pseudospectral methods for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 28, 501521.3.0.CO;2-S>CrossRefGoogle Scholar
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.CrossRefGoogle ScholarPubMed
Lopez, J. M. & Marques, F. 2005 Finite aspect ratio Taylor–Couette flow: Shil’nikov dynamics of 2-tori. Physica D 211, 168191.CrossRefGoogle Scholar
Lopez, J. M., Marques, F., Mercader, I. & Batiste, O. 2007 Onset of convection in a moderate aspect-ratio rotating cylinder: Eckhaus–Benjamin–Feir instability. J. Fluid Mech. 590, 187208.CrossRefGoogle Scholar
Lopez, J. M., Marques, F., Rubio, A. M. & Avila, M. 2009 Crossflow instability of finite Bödewadt flows: transients and spiral waves. Phys. Fluids 21, 114107.CrossRefGoogle Scholar
Maretzke, S., Hof, B. & Avila, M. 2014 Transient growth in linearly stable Taylor–Couette flows. J. Fluid Mech. 742, 254290.CrossRefGoogle Scholar
Marques, F. & Lopez, J. M. 2006 Onset of three-dimensional unsteady states in small aspect-ratio Taylor–Couette flow. J. Fluid Mech. 561, 255277.CrossRefGoogle Scholar
Marques, F. & Lopez, J. M. 2008 Influence of wall modes on the onset of bulk convection in a rotating cylinder. Phys. Fluids 20, 024109.CrossRefGoogle Scholar
Mercader, I., Batiste, O. & Alonso, A. 2010 An efficient spectral code for incompressible flows in cylindrical geometries. Comput. Fluids 39, 215224.CrossRefGoogle Scholar
Panades, C., Marques, F. & Lopez, J. M. 2011 Transitions to three-dimensional flows in a cylinder driven by oscillations of the sidewall. J. Fluid Mech. 681, 515536.CrossRefGoogle Scholar
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.CrossRefGoogle ScholarPubMed
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.CrossRefGoogle Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.CrossRefGoogle Scholar
Strogatz, S. 1994 Nonlinear Dynamics and Chaos. Addison-Wesley.Google Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Taylor, G. I. 1936 Fluid friction between rotating cylinders. II. Distribution of velocity between concentric cylinders when outer one is rotating and inner one is at rest. Proc. R. Soc. Lond. A 157, 565578.Google Scholar
Wendt, F. 1933 Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch. 4, 577595.CrossRefGoogle Scholar