Published online by Cambridge University Press: 26 April 2006
A thin fluid drop is at rest on a plane vertical surface, supported against gravity by surface tension. The perimeter of the drop is required to lie on a given closed curve, upon which the contact angle is arbitrary. If the drop is of sufficient volume, it can wet the whole area interior to this curve. However, for any given curve, there is a certain critical volume below which this fully wetted configuration is not physically acceptable, the formal solution having negative thickness. It is suggested here as an alternative that the upper portion of the drop, above a free boundary to be determined, must drain completely. Some time-dependent computations in two dimensions are presented to illustrate this draining property. In three dimensions, the static free boundary has zero contact angle, and must be determined as part of the solution. An example solved here is that where the original boundary is a circle, and the free boundary is a non-trivial curve lying inside it, whose shape is found by numerical methods. This problem also has relevance to the shape of a raindrop on a windowpane where surface contamination prevents contact-line motion, and the drop may again be considered to be confined within a prescribed boundary.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.