Article contents
Three-dimensional shock tube flows for dense gases
Published online by Cambridge University Press: 04 July 2007
Abstract
The formation process of a non-classical rarefaction shock wave in dense gas shock tubes is investigated by means of numerical simulations. To this purpose, a novel numerical scheme for the solution of the Euler equations under non-ideal thermodynamics is presented, and applied for the first time to the simulation of non-classical fully three-dimensional flows. Numerical simulations are carried out to study the complex flow field resulting from the partial burst of the shock tube diaphragm, a situation that has been observed in preliminary trials of a dense gas shock tube experiment. Beyond the many similarities with the corresponding classical flow, the non-classical wave field is characterized by the occurrence of anomalous compression isentropic waves and rarefaction shocks propagating past the leading rarefaction shock front. Negative mass flow through the rarefaction shock wave results in a limited interaction with the contact surface close to the diaphragm, a peculiarity of the non-classical regime. The geometrical asymmetry does not prevent the formation of a single rarefaction shock front, though the pressure difference across the rarefaction wave is predicted to be weaker than the one which would be obtained by the complete burst of the diaphragm.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2007
References
REFERENCES
- 12
- Cited by