Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T11:21:45.806Z Has data issue: false hasContentIssue false

Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

Published online by Cambridge University Press:  08 November 2013

A. M. Kamchatnov
Affiliation:
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, 142190, Russia
Y.-H. Kuo
Affiliation:
Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
T.-C. Lin
Affiliation:
Institute of Applied Mathematical Sciences, National Center of Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan
T.-L. Horng
Affiliation:
Department of Applied Mathematics, Feng Chia University, Taichung 40724, Taiwan
S.-C. Gou
Affiliation:
Department of Physics, National Changhua University of Education, Changhua 50058, Taiwan
R. Clift
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
G. A. El*
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
R. H. J. Grimshaw
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
*
Email address for correspondence: G.El@lboro.ac.uk

Abstract

Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg–de Vries, or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modelled by the forced Korteweg–de Vries equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including kinks, rarefaction waves, classical undular bores, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akylas, T. R. 1984 On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455466.CrossRefGoogle Scholar
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A. & Lynch, J. F. 2007 Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 121, 695722.CrossRefGoogle ScholarPubMed
Baines, P. G. 1984 A unified description of two-layer flow over topography. J. Fluid Mech. 146, 127167.Google Scholar
Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.Google Scholar
Cole, S. L. 1985 Transient waves produced by flow past a bump. Wave Motion 7, 579587.CrossRefGoogle Scholar
El, G. A., Grimshaw, R. H. J. & Smyth, N. F. 2009 Transcritical shallow-water flow past topography: finite-amplitude theory. J. Fluid Mech. 640, 187214.CrossRefGoogle Scholar
Esler, J. G. & Pierce, J. D. 2011 Dispersive dam-break and lock-exchange flows in a two-layer fluid. J. Fluid Mech. 667, 555585.CrossRefGoogle Scholar
Fornberg, B. & Whitham, G. B. 1978 A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. R. Soc. A 289, 373404.Google Scholar
Grimshaw, R. 2001 Environmental Stratified Flows. Kluwer Academic.Google Scholar
Grimshaw, R. H. J., Chan, K. H. & Chow, K. W. 2002 Transcritical flow of a stratified fluid: the forced extended Korteweg–de Vries model. Phys. Fluids 14, 755774.CrossRefGoogle Scholar
Grimshaw, R. H. J. & Smyth, N. F. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 697, 237272.Google Scholar
Gurevich, A. V. & Pitaevskii, L. P. 1974 Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291297.Google Scholar
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.CrossRefGoogle Scholar
Holloway, P., Pelinovsky, E. & Talipova, T. 2001 Internal tide transformation and oceanic internal solitary waves. In Environmental Stratified Flows (ed. Grimshaw, R.), pp. 3160. Kluwer.Google Scholar
Kakutani, T. & Yamasaki, N. 1978 Solitary waves on a two-layer fluid. J. Phys. Soc. Japan 45, 674679.Google Scholar
Kamchatnov, A. M., Kuo, Y.-H., Lin, T.-C., Horng, T.-L., Gou, S.-C., Clift, R., El, G. A. & Grimshaw, R. H. J. 2012 Undular bore theory for the Gardner equation. Phys. Rev. E 86, 036605.CrossRefGoogle ScholarPubMed
Kodama, Y., Pierce, V. U. & Tian, F.-R. 2008 On the Whitham equations for the defocusing complex modified KdV equation. SIAM J. Math. Anal. 41, 2658.Google Scholar
LeFloch, P. G. 2002 Hyperbolic Systems of Conservation Laws. Birkhauser.CrossRefGoogle Scholar
Leszczyszyn, A. M., El, G. A., Gladush, Yu. G. & Kamchatnov, A. M. 2009 Transcritical flow of a Bose–Einstein condensate through a penetrable barrier. Phys. Rev. A 79, 063608.Google Scholar
Madsen, P. A. & Hansen, A. B. 2012 Transient waves generated by a moving bottom obstacle: a new near-field solution. J. Fluid Mech. 169, 429464.Google Scholar
Marchant, T. R. 2008 Undular bores and the initial–boundary value problem for the modified Korteweg–de Vries equation. Wave Motion 45, 540555.CrossRefGoogle Scholar
Marchant, T. R. & Smyth, N. F. 1990 The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography. J. Fluid Mech. 221, 263287.Google Scholar
Marchant, T. R. & Smyth, N. F. 2020 The initial boundary problem for the Korteweg–de Vries equation on the negative quarter-plane. J. Fluid Mech. 458, 857871.Google Scholar
Melville, W. K. & Helfrich, K. R. 1987 Transcritical two-layer flow over topography. J. Fluid Mech. 178, 3152.CrossRefGoogle Scholar
Michallet, H. & Barthélemy, E. 1998 Experimental study of interfacial solitary waves. J. Fluid Mech. 366, 159177.Google Scholar
Smyth, N. 1987 Modulation theory solution for resonant flow over topography. Proc. R. Soc. Lond. A 409, 7997.Google Scholar
Trefethen, L. N. 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.Google Scholar
Wan, W., Muenzel, S. & Fleischer, J. W. 2010 Wave tunneling and hysteresis in nonlinear junctions. Phys. Rev. Lett. 104, 073903.Google Scholar
White, B. L. & Helfrich, K. R. 2012 A general description of a gravity current front propagating in a two-layer stratified fluid. J. Fluid Mech. 711, 545575.Google Scholar
Whitham, G. B. 1965 Non-linear dispersive waves. Proc. R. Soc. A 283, 238261.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.Google Scholar